Расчет расхода теплоносителя для системы отопления: формула по тепловой нагрузке, как рассчитать расход воды по мощности системы

Расчет тепловых потерь

Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.

Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:

  • площадь комнаты — 18 кв. м. (6 м х 3 м)
  • 1 этаж
  • потолок высотой 2,75 м,
  • наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
  • окно — 2 шт., 1,6 м х 1,1 м каждое
  • пол — деревянный утепленный, снизу — подпол.

Расчеты площадей поверхностей:

  • наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
  • окон: S2 = 2×1,1×1,6=3,52 кв. м.
  • пола: S3 = 6×3=18 кв. м.
  • потолка: S4 = 6×3= 18 кв. м.

Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:

  • Q1 = S1 х 62 = 20,78×62 = 1289 Вт
  • Q2= S2 x 135 = 3×135 = 405 Вт
  • Q3=S3 x 35 = 18×35 = 630 Вт
  • Q4 = S4 x 27 = 18×27 = 486 Вт
  • Q5=Q+ Q2+Q3+Q4=2810 Bт

Тепловой баланс здания

Если в помещении есть много источников выделения тепла (тепловыделения от большого количества людей, от солнечной радиации или иных процессов, сопровождающихся выделением тепла), то данные показатели также должны быть учтены в тепловом балансе здания.

Теплопотери и теплопоступления в помещении общественного здания.

Но, как правило, в условиях континентального климата для жилых зданий этими показателями пренебрегают, устанавливая системы автоматики на системы отопления здания или термостатические вентиля на приборы отопления. Этими мероприятиями можно поддерживать постоянную температуру в помещениях независимо от колебаний температуры наружного воздуха или внутренних тепловых возмущений. В производственных или административных зданиях такие теплопоступления обычно компенсируются системами вентиляции.

Итоговый тепловой баланс здания определяется следующим образом:

Qот=Qогр+Qвент(инф)+/-Qвнутр,

где, Qогр – теплопотери через ограждающие конструкции здания,

Qвент(инф) – потери тепла на нагрев инфильтрации или приточных систем вентиляции,

Qвнутр – поступления тепла от внутренних источников (люди, оборудование, солнечная радиация и пр.).

Тепловой баланс здания определяется по максимальным значениям потерь тепла в зимний период года при минимальных расчетных температурах наружного воздуха, влажности и скорости ветра для конкретного региона строительства. Все расчетные параметры регламентируются в нормативной документации, а, в частности, в СНиП 23-01-99 «Строительная климатология».

Для рассматриваемого примера теплопотери здания, а конкретно нагрузка на систему отопления, могут значительно отличаться по каждому помещению, поэтому использование удельных показателей, рассчитанных ранее носит чисто информационный характер. На практике следует выполнить точный теплотехнический расчет.

Итак, тепловой баланс для помещения площадью 8,12 м? выглядит следующим образом:

Q=(Qуд+Qуд.инф)*8,12м? 

Q100мм=(103+44)*8,12=1 194 Вт

Q150мм=(81+44)*8,12=1 015 Вт

Q200мм=(70+44)*8,12=926 Вт

Начальные условия примера

Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.

После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.

Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже

Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.

И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.

Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м2 потребуется примерно 15 000 Вт.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Расчет площади коттеджа по его плану. Также здесь отмечены магистрали отопительной системы и места установки радиаторов

Таблица расчета мощности радиаторов по площади помещения

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Популярные производители электрокотлов

При покупке в дом электрокотла для отопления стоит присмотреться к наиболее популярным брендам. Ведь если бы их оборудование не имело надлежащего качества — то вряд ли они смогли бы набрать высокую популярность среди населения. На данный момент на российском рынке наиболее широко распространено оборудование от таких производителей как:

Также популярность имеют и отечественные производители, например электрокотлы компаний РусНит и ЭВАН. Как и иностранные модели, данные отопители отличаются от своих аналогов низким уровнем шума при работе, высокой производительностью и долговечной работой.

Если ориентироваться по ценам, то стоит обратить внимание на то, какую именно мощность для котла необходимо выбрать, ведь от нее зависит, насколько тепло будет в доме после установки агрегата. Так, самые малозатратные котлы на 3 кВт могут обойтись владельцу в сумму от 3 тысяч рублей. Более мощные модели, следовательно, обойдутся в большую стоимость

Теперь рассмотрим наиболее популярные модели российского рынка и их стоимость на данный момент. Данное исследование было проведено в 2014 году, однако представленные в списке модели можно купить и по сей день:

Более мощные модели, следовательно, обойдутся в большую стоимость. Теперь рассмотрим наиболее популярные модели российского рынка и их стоимость на данный момент. Данное исследование было проведено в 2014 году, однако представленные в списке модели можно купить и по сей день:

Данная модель 220 в электрокотла рассчитана на мощность в 9 кВт, что позволяет отапливать помещения до 90 м 2. Такой котел отлично подойдет для небольшого коттеджа или маленького домика. При относительно дешевой стоимости, по набору функций российский отопитель может похвастать неплохим набором функций, которым обладают большинство более дорогих импортных котлов. На рынке можно найти такие котлы с ценой от 15 тысяч рублей.

  1. Vaillant eloBLOCK VE 12 вольт.

Данный агрегат при двухфазном подключении имеет мощность в 12 кВт, чего хватает для отопления помещений общей площадью в 120 м 2. Достигается такой показатель благодаря 2 ТЭНам, по 6 кВт каждый, встроенным в систему. Этот электрокотел считается одним из наиболее простых в обращении, ведь все настройки можно отрегулировать всего лишь одной клавишей. Стоимость такой модели на рынке стартует от 32 тысяч рублей.

Несмотря на то, что обогреватели СКАТ работают от трехфазной сети, их можно эксплуатировать и при подключении к двухфазной сети, рассчитанной на 220 вольт. Как и предыдущий котел, СКАТ имеет мощность в 12 кВт, это означает, что он способен отапливать помещения площадью до 120 м 2. Минимальная стоимость такого отопителя находится на отметке в 29,5 тысяч рублей.

Перед покупкой электрокотла стоит не только рассчитать деньги на его приобретение, но вычислить примерные затраты на расходы электроэнергии, которые могут возникнуть после установки агрегата.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Расчет мощности системы отопления по объему жилья

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м2, комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м3.

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Теплая зима. Холода отсутствуют или очень слабы От 0,7 до 0,9 Краснодарский край, побережье Черного моря
Умеренная зима 1,2 Средняя полоса России, Северо-Запад
Суровая зима с достаточно сильными холодами 1,5 Сибирь
Экстремально холодная зима 2,0 Чукотка, Якутия, регионы Крайнего Севера

Расчет мощности системы отопления по объему жилья

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому

Калькулятор — расчет объема системы отопления

Перейти к расчётам
 

Укажите запрашиваемые данные и нажмите «РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

КОТЁЛ
Объем теплообменника котла , литров (паспортная величина)

РАСШИРИТЕЛЬНЫЙ БАК
Объем расширительного бака, литров

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

Разборные, секционные радиаторы
Тип радиатора:
– чугунные МС-140 с межосевым 500 мм
– чугунные МС-140 с межосевым 300 мм
– чугунные ЧМ-2 с межосевым 500 мм
– чугунные ЧМ-2 с межосевым 300 мм
– алюминиевые с межосевым 500 мм
– алюминиевые с межосевым 350 мм
– биметаллические с межосевым 500 мм
– биметаллические с межосевым 350 мм

Общее количество секций

Неразборные радиаторы и конвекторы
Объем прибора по паспорту

Количество приборов
Теплый пол

Тип и диаметр трубы

Общая длина контуров

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)
Стальные трубы ВГП

Ø ½ “, метров

Ø ¾ “, метров

Ø 1 “, метров

Ø 1¼ “, метров

Ø 1½ “, метров

Ø 2 “, метров

Армированные полипропиленовые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

Ø 50 мм, метров

Металлопластиковые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)
Наличие дополнительных приборов и устройств:
– нет
– есть

Суммарный объем дополнительных элементов системы

Отопительные приборы

Как рассчитать отопление в частном доме для отдельных помещений и подобрать соответствующие этой мощности отопительные приборы?

Сама методика расчета потребности в тепле для отдельной комнаты полностью идентична приведенной выше.

К примеру, для комнаты площадью 12 м2с двумя окнами в описанном нами доме расчет будет иметь такой вид:

  1. Объем комнаты равен 12*3,5=42 м3.
  2. Базовая тепловая мощность будет равной 42*60=2520 ватт.
  3. Два окна добавят к ней еще 200. 2520+200=2720.
  4. Региональный коэффициент увеличит потребность в тепле вдвое. 2720*2=5440 ватт.

Как пересчитать полученное значение в количество секций радиатора? Как подобрать количество и тип отопительных конвекторов?

Производители всегда указывают тепловую мощность для конвекторов, пластинчатых радиаторов и т.д. в сопроводительной документации.

Таблица мощности для конвекторов VarmannMiniKon.

  • Для секционных радиаторов необходимую информацию обычно можно найти на сайтах дилеров и производителей. Там же нередко можно обнаружить калькулятор для пересчета киловатт в секции.
  • Наконец, если вы используете секционные радиаторы неизвестного происхождения, при их стандартном размере в 500 миллиметров по осям ниппелей можно ориентироваться на следующие усредненные значения:

Тепловая мощность на одну секцию, ватты

В автономной отопительной системе с ее умеренными и предсказуемыми параметрами теплоносителя чаще всего используются алюминиевые радиаторы. Их разумная цена очень приятным образом сочетается с пристойным внешним видом и высокой теплоотдачей.

В нашем случае алюминиевых секций мощностью 200 ватт потребуется 5440/200=27 (с округлением).

Разместить в одной комнате столько секций — нетривиальная задача.

Как всегда, есть пара тонкостей.

  • При боковом подключении многосекционного радиатора температура последних секций куда ниже, чем первых; соответственно, падает тепловой поток от отопительного прибора. Решить проблему поможет простая инструкция: подключайте радиаторы по схеме «снизу вниз».
  • Производители указывают тепловую мощность для дельты температур между теплоносителем и помещением в 70 градусов (например, 90/20С). При ее снижении тепловой поток будет падать.

Особый случай

Нередко в качестве отопительных приборов в частных домах используются самодельные стальные регистры.

Обратите внимание: они привлекают не только низкой себестоимостью, но и исключительной прочностью на разрыв, что очень кстати при подключении дома к теплотрассе. В автономной системе отопления их привлекательность сводится на нет непритязательным внешним видом и невысокой теплоотдачей на единицу объема отопительного прибора

Прямо скажем — не верх эстетики.

Тем не менее: как оценить тепловую мощность регистра известного размера?

Для одиночной горизонтальной круглой трубы она вычисляется по формуле вида Q = Pi*Dн *L * k * Dt, в которой:

  • Q — тепловой поток;
  • Pi — число «пи», принимаемое равным 3,1415;
  • Dн — наружный диаметр трубы в метрах;
  • L — ее длина (тоже в метрах);
  • k — коэффициент теплопроводности, который берется равным 11,63 Вт/м2*С;
  • Dt — дельта температур, разница между теплоносителем и воздухом в комнате.

В многосекционном горизонтальном регистре теплоотдача всех секций, кроме первой, умножается на 0,9, поскольку они отдают тепло восходящему потоку нагретого первой секцией воздуха.

В многосекционном регистре нижняя секция отдает больше всего тепла.

Давайте вычислим теплоотдачу четырехсекционного регистра с диаметром секции 159 мм и длиной 2,5 метра при температуре теплоносителя 80 С и температуре воздуха в комнате 18 С.

  1. Теплоотдача первой секции равна 3,1415*0,159*2,5*11,63*(80-18)=900 ватт.
  2. Теплоотдача каждой из остальных трех секций равна 900*0,9=810 ватт.
  3. Суммарная тепловая мощность отопительного прибора — 900+(810*3)=3330 ватт.

Требования к теплоносителю

Нужно сразу понять, что не существует идеального теплоносителя. Те виды теплоносителей, которые существуют на сегодняшний день, могут выполнять свои функции только в определенном диапазоне температур. Если выйти за рамки этого диапазона, то характеристики качества теплоносителя могут резко измениться.

Теплоноситель для отопления должен обладать такими свойствами, которые будут позволять за определенную единицу времени переносить как можно большее количество тепла. От вязкости теплоносителя во много зависит, какой воздействие она будет оказывать на прокачку теплоносителя по всей отопительной системе за конкретный интервал времени. Чем выше вязкость теплоносителя, тем более хорошими характеристиками он обладает.

Физические свойства теплоносителей

Теплоноситель  не должен оказывать коррозийное воздействие на материал, из которого изготовлены трубы или приборы нагревательного характера.

Если это условие не будет соблюдаться, то выбор материалов станет более ограниченным. Помимо вышеперечисленных свойств, теплоноситель также должен обладать смазывающими способностями. От этих характеристик зависит выбор материалов, которые применяются для конструкции различных механизмов и циркуляционных насосов.

Кроме того, теплоноситель должен быть безопасным исходя из таких его характеристик, как: температура возгорания, выделение токсичных веществ, вспышка паров. Также теплоноситель не должен быть слишком дорогим, изучая отзывы, можно понять, что даже если система и будет работать эффективно, не оправдает себя с финансовой точки зрения.

Видео о том, как система заправляется теплоносителем и как производится замена теплоносителя в системе отопления, можно посмотреть ниже.

Рассчитать просто

Теперь, когда мы разобрались, какие показатели следует учесть в формуле, она уже не кажется такой сложной. Достаточно один раз произвести расчеты, чтобы понять, насколько она удобная.

Ведь действительно, при строительстве дома да и после этого, у хозяина остается подробный графический план каждого помещения с размерами, учитывающий стороны света. Предусмотреть влияние климатических особенностей региона тоже нетрудно. Единственное, что потребуется сделать, — уточнить кое-какие нюансы, прогулявшись с рулеткой по объекту.

Проанализируйте, какие помещения располагаются сверху и снизу, где окна и какая схема монтажа радиаторов использована. Тогда вы без проблем рассчитаете тепловую мощность, которая потребуется для поддержания комфортной температуры воздуха в помещении.

Вам будет проще работать с показателями, если вы сразу будете вносить их в тетрадь, нарисовав специальную таблицу. В нее же впоследствии можно вписать результаты расчётов. Произвести итоговые вычисления поможет встроенный калькулятор, с заложенными выше упомянутыми коэффициентами.

Если с получением каких-то из перечисленных выше показателей есть трудности, можно не брать их в расчет. Результат все равно будет учитывать максимально благоприятные условия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector