Применение и расчёт электрической спирали из нихрома​

Для чего необходима муфельная печь

Муфельная печь используется:

  1. Для термообработки.

    В термообработку муфельных печей входит (закалка, отжиг, отпуск, нормализация, обжиг).

    Термическая обработка металлов и сплавов в ней производится с целью улучшения их служебных свойств.

  2. Для отжига (гомогенизация и нормализация).

    Целью является получение однородной зёренной микроструктуры и растворение включений. Последующее охлаждение является медленным, препятствующим образованию неравновесных структур типа мартенсита.

  3. Дисперсионное твердение (старение).

    После проведения отжига проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.

  4. Для закалки материала.

    Закалку в муфельной печи проводят с повышенной скоростью охлаждения с целью получения неравновесных структур типа мартенсита (повышение твёрдости). Критическая скорость охлаждения, необходимая для закалки зависит от материала.

  5. Для отпуска материала.

    Отпуск в муфельной печи необходим для снятия внутренних напряжений, внесённых при закалке. Материал становится более пластичным при некотором уменьшении прочность.

  6. Для сжигания (озоление).

    Метод применяется тогда, когда имеется специальное задание исследовать объекты биологического происхождения на наличие марганца, меди и некоторых других металлов.

  7. Для высушивания.

    Высушивание в муфельной печи — намеренное удаление влаги (обычно воды, иногда — жидкой фракции произвольного химического состава) из материала.

В муфельных печах чаще всего проводят обжиг.

При обжиге керамических изделий в муфельной печи, происходят сложнейшие физико-химические процессы, в результате которых керамическая масса – механическая смесь минеральных частиц – становится камнеподобным материалом – прочным, твердым, химически стойким, с присущими только ему эстетическими свойствами.

Обжиг керамических изделий — это важная и завершающая стадия технологического процесса керамических изделий, конечная и важная стадия любого керамического производства.

Так же обжиг применяют ювелиры для обжига ювелирных и художественных изделий из цветных металлов.

При обжиге сырца в муфельной печи образуется искусственный каменный материал, который в отличие от глины не размывается водой и обладает относительно высокой прочностью. Это объясняется физико-химическими процессами, происходящими в глине под влиянием повышенных температур.

При нагреве в муфельной печи сырых керамических изделий до 110 градусов удаляется свободная вода и керамическая масса становится непластичной. Суммарные затраты на обжиг достигают 35-40 % себестоимости товарной продукции.

Лабораторная муфельная печь предназначена для лабораторных анализов (купелирование).

Лабораторные анализы — окислительное плавление сплава свинца с золотом или серебром с целью выделения их в чистом виде.

Купелирование в муфельной печи основано на том, что свинец и другие неблагородные металлы при высокой температуре легко окисляются кислородом воздуха, тогда как золото и серебро не изменяются.

Применение нихромовой проволоки

Главное качество нихрома – это высокое сопротивление электрическому току. Оно определяет области применения сплава. Нихромовая спираль применяется в двух качествах – как нагревательный элемент или как материал для электросопротивлений электрических схем.

Для нагревателей используется электрическая спираль из сплавов Х20Н80-Н и Х15Н60-Н. Примеры применений:

  • бытовые терморефлекторы и тепловентиляторы;
  • ТЭНы для бытовых нагревательных приборов и электрического отопления;
  • нагреватели для промышленных печей и термооборудования.

Сплавы Х15Н60-Н-ВИ и Х20Н80-Н-ВИ, получаемые в вакуумных индукционных печах, используют в промышленном оборудовании повышенной надежности.

Спираль из нихрома марок Х15Н60, Х20Н80, Х20Н80-ВИ отличается тем, что его электросопротивление мало меняется при изменении температуры. Из нее изготавливают резисторы, соединители электронных схем, ответственные детали вакуумных приборов.

Технология постройки муфельной печи

Порядок выполнения работ горизонтальной ли вертикальной муфельной печи аналогичен, различие состоит в расположении элементов печи.

  1. Корпус муфельной печи выполняем из листового железа. Вырезаем болгаркой прямоугольную полоску нужного размера, сгибаем ее в радиус и при помощи сварки герметично завариваем шов. Для предотвращения образования коррозии можно покрыть металл несколькими слоями огнеупорной краски. К полученному цилиндру привариваем дно. Для этого вырезаем из листа стали круг необходимого диаметра, равного диаметру цилиндра. Укрепляем стенки и донышко металлической арматурой. Корпус выполняем такого объема, чтобы внутри можно было разместить термозащитный слой и огнеупорный кирпич.
  2. В случае если для корпуса используется старый холодильник, аналогично укрепляем его донышко и стенки металлическими уголками или трубками.
  3. Внутреннюю часть корпуса выкладываем толстым слоем базальтовой ваты.

  4. Для изготовления внутреннего термослоя (аккумулятора тепла) используем шамотный кирпич (огнеупорный).  Задача состоит в состыковке кирпичей в количестве семи штук в форме трубы, которая будет в дальнейшем служить рабочей камерой печи.

  5. Для этого раскладываем кирпич в ряд и делаем на каждом кирпиче разметку, по которой будем производить резку. Форма кирпичей после резки должна позволять собрать все кирпичи в форме полой трубы. Обрезку производим болгаркой. Для удобства кирпичи нумеруем. После обрезки собираем их вместе и закрепляем проволокой, проверяя правильность резки. При необходимости подправляем форму, добиваясь точности.

Помещаем образовавшуюся кирпичную трубу в корпус со слоем теплоизоляции.

Далее на внутренней поверхности кирпичей необходимо пропилить канавки под проволоку.

Канавки под проволоку

Но прежде из мотка нихромовой или фехралевой проволоки необходимо сделать спираль диаметром около 6 мм. Для этого наматываем проволоку на основу (карандаш, сварочный электрод или тонкий металлический пруток).Достаем кирпичи и вновь выкладываем их на ровную поверхность в ряд.

Прикладываем спираль, делаем разметку под будущие канавки, которые будем вырезать в кирпичах болгаркой. Правильность линий проверяем строительным уровнем. В конечном итоге внутри рабочего пространства проволока будет уложена по спирали от дна к вершине рабочего пространства

Важно, чтобы витки не соприкасались друг с другом, иначе будет замыкание

Спираль в муфельной печи

Чтобы вывести концы проволоки за пределы рабочей камеры и подключить их к автомату, между двумя соседними кирпичами вставляем три тонких длинных отрезка керамической плитки с пропиленными в них тонкими каналами под проволоку.

Каналы под проволоку из муфельной печи

Применение таких керамических выводов в дальнейшем позволит легко производить ремонтные работы муфельной печи.

Коммутация электрической части с тремя ступенями мощности

  • для первой ступени мощностей необходимо два контура спиралей включать последовательно;
  • вторая ступень подразумевает отдельное подключение нижней спирали;
  • третья ступень мощности – параллельное включение двух контуров.

Готовую конструкцию рабочей камеры помещаем в корпус со слоем теплоизолирующего материала и одним кирпичом, уложенным на дно, обмазывая его огнеупорной (печной) глиной или огнеупорным клеем.

Чтобы вывести керамические каналы за пределы корпуса, сверлим в нем отверстия.

Делаем корпус и обмазываем шамотной глиной

Крышку выполняем из листовой стали, вырезая ее по размеру печи и закрепляя на ней печной глиной огнеупорный кирпич. Сверху привариваем щеколду, ручки и навесы. Для герметичности по краям крышки и на примыкающие стенки муфельной печи наносим слой термостойкого силикона, предварительно тщательно обезжирив поверхности.

Муфельная печь в работе

После полного высыхания печи подключаем проволоку к электрическому автомату со стабилизатором и проводим ряд испытаний, настраивая мощность накала спиралей и температуру в рабочем пространстве увеличивая или уменьшая напряжение сети.

Во время работы печи дверцу необходимо плотно запирать.

Выбор спирали

Гинекологические внутриматочные спирали бывают разных марок, как отечественного, так и зарубежного производства. Кроме того, их стоимость может варьироваться от 250 рублей до нескольких тысяч. На это влияет много факторов.

Достаточной популярность среди российских женщин пользуется спираль «Юнона Био». Она привлекает, прежде всего, невысокой стоимостью. Однако низкая эффективность действия данной спирали влечет за собой высокий риск наступления беременности.Хорошо зарекомендовала себя внутриматочная спираль «Мирена», однако она является одной из самых дорогих в своем ряду. При этом использование внутриматочной спирали считается самым дешевым и доступным видом контрацепции.

Это гормональная спираль. Ее производители обещают, что спираль «Мирена» реже смещается в матке или выпадает. А именно это приводит к наступлению беременности, потому пациенткам рекомендуется регулярно проверять наличие внутриматочного контрацептива на положенном месте.

Стандартное напряжение в бытовой электросети U=220В. Сила тока ограничивается предохранителями в электрощитке и равна, как правило, I=16А.

  • Таблицы физических величин, И.К. Кикоин, 1976
  • длина спирали формула

Первые шаги: подготовка ручки-корпуса будущего паяльника

Для начала был взят деревянный черенок (лучше брать берёзу или клён), обточен «под руку» и зашлифован. Форму ему можно придать любую, но для первого раза я не стал делать лишнюю работу. Слишком длинным его также не следует делать, хотя, это дело вкуса.

Деревянный черенок, который будет использован в качестве ручки

Далее в работу вступила дрель с толстым сверлом, на котором при помощи изоленты я обозначил ограничитель отверстия. Глубины в 2-3 см для мини-паяльника на 12 В было вполне достаточно. Проделанное по центру ручки с торца отверстие будет служить для установки гнезда питания и протяжки проводов к нагревательному элементу.

С обратной стороны было просверлено идентичное отверстие, которое послужит для установки жала паяльника.

Высверливаем одинаковые отверстия с двух сторон ручки паяльника

Подготовка пазов для питающего провода

На расстоянии 2-3 см от того края, где планируется установить гнездо для питающего штекера, делаем разметку для двух отверстий (по противоположным сторонам). Для удобства замера расстояния можно использовать то же сверло с отмеченной изолентой глубиной. Определив места расположения отверстий при помощи маркера, снова берёмся за дрель, но с уже более тонким сверлом.

Отмечаем точки сверления отверстий под провода

Засверливание под провода следует производить под небольшим углом – так их впоследствии будет проще протянуть. В итоге должно получиться так, чтобы провод входил с торца и под небольшим изломом прокладывался далее, к обратному концу рукоятки, на которой будет расположено жало паяльника.

Высверливаем более тонкие отверстия под углом для упрощения протяжки проводов

Теперь необходимо сделать так, чтобы тянущиеся от гнезда питания вдоль ручки провода не мешали при работе с паяльником. Для этого, от отверстий до того края, где будет расположено жало, я прорезал пазы. Сделать это несложно при помощи обычного канцелярского ножа. Конечно, если бы рукоятка делалась из сосны, резать по волокнам было бы гораздо проще, однако такой материал был «отметён» сразу. Причиной тому стало то, что дополнительное покрытие ручки не планировалось, а значит, была вероятность того, что руки при работе могут испачкаться в смоле.

Прорезаем пазы, в которые впоследствии будет проложен провод

Когда пазы прорезаны, их желательно немного подработать обычным круглым надфилем. Ведь несмотря на кустарное производство паяльника на 12 В, им предполагается работать, а значит, аккуратность здесь будет совсем не лишней. В итоге, получилась рукоятка с отверстиями с двух сторон и пазами под провод, которая готова к дальнейшей работе – сборке начинки устройства для пайки проводов.

Рукоятка готова, можно приступать к сборке

Что такое нихром

Нихромовый сплав обладает хорошей способностью сопротивляться потоку электронов. Эти уникальные свойства делают его пригодными для применений в нагревательных элементах фёнов и тепловых пушек. Он обладает высокой стойкостью к окислению, что также делает его подходящим материалом для нагревательной техники. Нихромовая проволока наматывается в катушки с определенным электрическим сопротивлением нихрома, через который пропускается ток для производства тепла.

Никелево-хромовый сплав в соотношении 90/10 используют в термопарах в сочетании со сплавом Ni / Al 95/5. Эта комбинация называется хромель-алюмель, представляет нагревательные элементы с максимальной рабочей температурой 1100 C и подвержен дрейфу в области 1000 C из-за окисления. Этот эффект устраняют добавлением кремния. Коммерческие сорта включают Nicrosil (содержащий 14% Cr и 1,5% Si) и Nisil (содержащий 4,5% Si и 0,1% Mg).


Как выглядит нихром

Никелево-хромовый металл в соотношении 80/20 относится к высокотемпературному коррозионностойкому сплаву, применяемого для деформируемых и литых деталей, поскольку он имеет лучшую стойкость к окислению и горячей коррозии в сравнении с дешевыми железо-никель-хромовыми сплавами.

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Документ, определяющий правила устройства, регламентирующий принципы построения и требования как к отдельным системам, так и к их элементам, узлам и коммуникациям ЭУ, условиям размещения и монтажа.

ПТЭЭП

Требования и обязанности потребителей, ответственность за выполнение, требования к персоналу, осуществляющему эксплуатацию ЭУ, управление, ремонт, модернизацию, ввод в эксплуатацию ЭУ, подготовке персонала.

ПОТЭУ

Правила по охране труда при эксплуатации электроустановок – документ, созданный на основе недействующих в настоящее время Межотраслевых правил по охране труда (ПОТ Р М-016-2001, РД 153-34.0-03.150).

Для одного знакомого связиста расчет длины проволоки для нагревателя было мегазадачей. Он вообще не парился этим вопросом, а просто сопел и замерял сопротивление проволоки спирали омметром каждые двадцать-тридцать витков, весь окутанный сигаретным дымом от «Примы». И матерился, если наматывал слишком мало или много. Впрочем, мужик и специалист в телефонии он был классный.

На данном этапе жизни намотка обогревателей для меня не особо актуальна, но я все равно решила написать этот онлайн калькулятор расчета длины проволоки. Может кому-то будет полезен.

Для использования калькулятора вводим необходимые параметры обогревателя или электроплиты в соответствующие поля и нажимаем кнопку «Рассчитать длину проволоки для спирали нагревателя».

Полученные результаты не учитывают рост электрического сопротивления проводника с ростом его температуры. Поэтому фактическая мощность (как и потребляемый ток от сети) всегда несколько ниже расчетных величин.

Требуемая мощность обогревателя или электроплиты Вт

Напряжение питания В

Выберете материал проволоки для намотки спирали

Выберете диаметр проволоки из стандартных промышленных размеров. Не забываем, что сечение и диаметр проволоки – разные понятия. Если не знаем диаметра – пользуемся микрометром или штангельциркулем. Интересно, для чего нужен нихром диаметром в 10 мм, что им вообще такое мотать? Наверно, детонатор для термоядерного реактора.

Проверка сопротивления ТЭНа в стиральной машине

Поломка ТЭНа – одна из самых распространенных причин выхода из строя стиральных машин. На поверхности нагревателя скапливается накипь, особенно быстро она образуется при использовании для стирки жесткой воды. В результате нагревательный элемент постепенно начинает перегреваться, и со временем это приводит к его полному выходу из строя.

Самый простой способ проверки работоспособности – прозвонить ТЭН с использованием мультиметра. В среднем, величина сопротивления нагревателей стиральных машин составляет 24-40 Ом. Более точное значение можно определить, выполнив расчет по вышеуказанной формуле. Сопротивление будет зависеть от мощности прибора, указанного в паспорте машинки.

Для проверки нужно выполнить следующие действия:

  1. Отсоединить стиральную машину от электросети. Лучше еще раз убедиться, что она действительно отключена.
  2. Включить на мультиметре режим проверки сопротивления в диапазоне 200 Ом.
  3. Подсоединить щупы тестера к клеммам ТЭНа.

Если сопротивление ТЭНа для стиральной машины приближено к требуемым показателям, значит, он исправен, и причины поломки следует искать в других узлах. Если прибор показывает ноль или единицу, то это говорит о нарушениях работы нагревательного элемента, и он нуждается в замене на оригинальную или аналогичную деталь.

Есть альтернативный вариант проверки работоспособности ТЭНа, если стиральная машинка включается, но не нагревает воду до нужной температуры

После включения режима стирки обратите внимание на счетчик потребления электрической энергии. Если потребление не выросло, то это говорит о том, что ТЭН не работает и нуждается в замене

Если же потребление тока увеличилось, значит, нужно искать другую причину поломки.

Сопротивление ТЭНа для стиральной машины должен проверять специалист. Самостоятельные попытки ремонта могут привести к нарушениям в работе электроники, поэтому лучше не рисковать.

Пошаговая инструкция по изготовлению

  1. Лучше всего для корпуса подойдут металлические коробки бытовых приборов (например, старой стиральной машины), если таковых не оказалось, придется сделать корпус из оцинкованной стали.

  2. На дно корпуса приваривают уголки для укрепления основания. Вместо них можно использовать металлические трубы 1,5 см в диаметре. К углам основания приваривают ножки из тех же материалов. Так же укрепляют верхнюю часть корпуса, дверь и стенку, на которую эта дверь будет крепиться.
  3. Дно и внутренние стенки конструкции обкладывают слоем базальтовой ваты в 1 см и закрепляют его с помощью металлических уголков. Закрывают слой металлическими листами.
  4. Укладывают на дно будущего агрегата легкие огнеупорные кирпичи марки «ШЛ» или волокнистые шамотными плитами, которые нарезают по размеру. Для связывания кирпичей используют мертель, шамотную глину или кладочную смесь. Для качественной фиксации кирпичей на металлической поверхности в смесь добавляют 30% цемента.
  5. Кладку кирпичей осуществляют максимально близко друг к другу, на расстоянии не более 0,5 см. Огнеупорную смесь растворяют в воде, перед установкой каждый кирпич увлажняют. Вначале закладывают дно корпуса. Затем поднимают стены и заканчивают верхнюю часть, укладывая кирпичи с небольшим уклоном вверх. Дверку тоже выкладывают кирпичом таким образом, чтобы заложенный слой входил в отверстие в корпусе.
  6. Приваривают петли к корпусу и подгоняют дверь так, чтобы зазор между кирпичной кладкой двери и стен был минимальным. Чтобы достичь герметичности при закрывании двери, слой кирпича необходимо уплотнить. Лучше всего для этого подойдет термостабильный уплотнитель или обычный силикон.
  7. После того, как кладка высохнет, в кирпичах делают канавки для укладывания в них нихромовой спирали с диаметром витка от 0,5 до 0,7 см. Канавки делают такой же глубины. Спирали фиксируют любым удобным способом: с помощью укрепления проволокой или МКР-трубки, сделав углубление в кирпиче под углом. Витки спирали не должны соединяться друг с другом.
  8. Прокладывают 2 контура для возможности регулировки температуры. Концы спиралей выводят на верхнюю часть корпуса через сквозные отверстия в верхних кирпичах и фиксируют их на керамической пластине болтами.
  9. На переднюю сторону печи устанавливают переключатель с тремя контактами с одной стороны и двумя с другой. Провода питания (ноль и фазу) подключают к стороне с двумя контактами. Оставшиеся 3 контакта соединяют проводом с керамической пластиной. Такое подключение необходимо для регулировки включения спиралей поочередно или вместе.
  10. Для безопасного использования печи устанавливают усиленную розетку с заземлением. Можно подвести питание к прибору из щитка через отдельный автоматический выключатель.
  11. Готовый аппарат просушивают на солнце или возле радиатора в течение 1-2-х месяцев. Завершают работу над печью прогрев ее несколько часов при минимальной температуре до тех пор, пока не перестанет клубиться дым. Мини-муфельная печь своими руками готова к использованию.

Как рассчитать нагрев нихрома?

Электрическое сопротивление — это одна из самых важных характеристик нихрома.

Оно определяется многими факторами, в частности электрическое сопротивление нихрома зависит от размеров проволоки или ленты, марки сплава.

Общая формула для активного сопротивления имеет вид:

R = ρ · l / S

R — активное электрическое сопротивление (Ом), ρ- удельное электрическое сопротивление (Ом·мм), l- длина проводника (м), S — площадь сечения (мм2)

Значения электрического сопротивления для 1 м нихромовой проволоки Х20Н80

1 Ø 0,1 137,00
2 Ø 0,2 34,60
3 Ø 0,3 15,71
4 Ø 0,4 8,75
5 Ø 0,5 5,60
6 Ø 0,6 3,93
7 Ø 0,7 2,89
8 Ø 0,8 2,2
9 Ø 0,9 1,70
10 Ø 1,0 1,40
11 Ø 1,2 0,97
12 Ø 1,5 0,62
13 Ø 2,0 0,35
14 Ø 2,2 0,31
15 Ø 2,5 0,22
16 Ø 3,0 0,16
17 Ø 3,5 0,11
18 Ø 4,0 0,087
19 Ø 4,5 0,069
20 Ø 5,0 0,056
21 Ø 5,5 0,046
22 Ø 6,0 0,039
23 Ø 6,5 0,0333
24 Ø 7,0 0,029
25 Ø 7,5 0,025
26 Ø 8,0 0,022
27 Ø 8,5 0,019
28 Ø 9,0 0,017
29 Ø 10,0 0,014

Значения электрического сопротивления для 1 м нихромовой ленты Х20Н80

1 0,1×20 2 0,55
2 0,2×60 12 0,092
3 0,3×2 0,6 1,833
4 0,3×250 75 0,015
5 0,3×400 120 0,009
6 0,5×6 3 0,367
7 0,5×8 4 0,275
8 1,0×6 6 0,183
9 1,0×10 10 0,11
10 1,5×10 15 0,073
11 1,0×15 15 0,073
12 1,5×15 22,5 0,049
13 1,0×20 20 0,055
14 1,2×20 24 0,046
15 2,0×20 40 0,028
16 2,0×25 50 0,022
17 2,0×40 80 0,014
18 2,5×20 50 0,022
19 3,0×20 60 0,018
20 3,0×30 90 0,012
21 3,0×40 120 0,009
22 3,2×40 128 0,009

Расчет нихромовой спирали

При намотке спирали из нихрома для нагревательных приборов эту операцию зачастую выполняют «на глазок», а затем, включая спираль в сеть, по нагреву нихромового провода подбирают требующееся количество витков. Обычно такая процедура занимает много времени, да и нихром расходуется попусту.

Чтобы рационализировать эту работу при использовании нихромовой спирали на напряжение 220 В, предлагаю воспользоваться данными приведенными в таблице, из расчета, что удельное сопротивление нихрома = (Ом · мм2 / м) C.

С ее помощью можно быстро определить длину намотки виток к витку в зависимости от толщины нихромового провода и диаметра стержня, на который наматывается нихромовая спираль.

Пересчитать длину спирали из нихрома на другое напряжение нетрудно, использовав простую математическую пропорцию.

Длина нихромовой спирали в зависимости от диаметра нихрома и диаметра стержня

1,5 49 1,5 59 1,5 77 2 64 2 76 2 84 3 68 3 78
2 30 2 43 2 68 3 46 3 53 3 64 4 54 4 72
3 21 3 30 3 40 4 36 4 40 4 49 5 46 6 68
4 16 4 22 4 28 5 30 5 33 5 40 6 40 8 52
5 13 5 18 5 24 6 26 6 30 6 34 8 31
6 20 8 22 8 26 10 24

Например, требуется определить длину нихромовой спирали на напряжение 380 В из провода толщиной 0,3 мм, стержень для намотки Ø 4 мм. Из таблицы видно, что длина такой спирали на напряжение 220 В будет равна 22 см. Составим простое соотношение:

220 В — 22 см

380 В — Х см

тогда:

X = 380 · 22 / 220 = 38 см

Намотав нихромовую спираль, подключите ее, не обрезая, к источнику напряжения и убедитесь в правильности намотки. У закрытых спиралей длину намотки увеличивают на 1/3 значения, приведенного в таблице.

Расчет массы нихрома Х20Н80 (проволока и лента)

В данной таблице приведена теоретическая масса 1 метра нихромовой проволоки и ленты. Она изменяется в зависимости от размеров продукции.

Ø 0,4 8,4 0,126 0,001
Ø 0,5 8,4 0,196 0,002
Ø 0,6 8,4 0,283 0,002
Ø 0,7 8,4 0,385 0,003
Ø 0,8 8,4 0,503 0,004
Ø 0,9 8,4 0,636 0,005
Ø 1,0 8,4 0,785 0,007
Ø 1,2 8,4 1,13 0,009
Ø 1,4 8,4 1,54 0,013
Ø 1,5 8,4 1,77 0,015
Ø 1,6 8,4 2,01 0,017
Ø 1,8 8,4 2,54 0,021
Ø 2,0 8,4 3,14 0,026
Ø 2,2 8,4 3,8 0,032
Ø 2,5 8,4 4,91 0,041
Ø 2,6 8,4 5,31 0,045
Ø 3,0 8,4 7,07 0,059
Ø 3,2 8,4 8,04 0,068
Ø 3,5 8,4 9,62 0,081
Ø 3,6 8,4 10,2 0,086
Ø 4,0 8,4 12,6 0,106
Ø 4,5 8,4 15,9 0,134
Ø 5,0 8,4 19,6 0,165
Ø 5,5 8,4 23,74 0,199
Ø 5,6 8,4 24,6 0,207
Ø 6,0 8,4 28,26 0,237
Ø 6,3 8,4 31,2 0,262
Ø 7,0 8,4 38,5 0,323
Ø 8,0 8,4 50,24 0,422
Ø 9,0 8,4 63,59 0,534
Ø 10,0 8,4 78,5 0,659
1 x 6 8,4 6 0,050
1 x 10 8,4 10 0,084
0,5 x 10 8,4 5 0,042
1 x 15 8,4 15 0,126
1,2 x 20 8,4 24 0,202
1,5 x 15 8,4 22,5 0,189
1,5 x 25 8,4 37,5 0,315
2 x 15 8,4 30 0,252
2 x 20 8,4 40 0,336
2 x 25 8,4 50 0,420
2 x 32 8,4 64 0,538
2 x 35 8,4 70 0,588
2 x 40 8,4 80 0,672
2,1 x 36 8,4 75,6 0,635
2,2 x 25 8,4 55 0,462
2,2 x 30 8,4 66 0,554
2,5 x 40 8,4 100 0,840
3 x 25 8,4 75 0,630
3 x 30 8,4 90 0,756
1,8 x 25 8,4 45 0,376
3,2 x 32 8,4 102,4 0,860

Расчет массы вольфрамовой проволоки

8 0,008 0,19 0,0010 0,97 1031,32
9 0,009 0,25 0,0012 1,23 814,87
10 0,01 0,30 0,0015 1,52 660,04
11 0,011 0,37 0,0018 1,83 545,49
12 0,012 0,44 0,0022 2,18 458,36
13 0,013 0,51 0,0026 2,56 390,56
14 0,014 0,59 0,0030 2,97 336,76
15 0,015 0,68 0,0034 3,41 293,35
16 0,016 0,78 0,0039 3,88 257,83
17 0,017 0,88 0,0044 4,38 228,39
18 0,018 0,98 0,0049 4,91 203,72
19 0,019 1,09 0,0055 5,47 182,84
20 0,02 1,21 0,0061 6,06 165,01
30 0,03 2,73 0,0136 13,64 73,34
40 0,04 4,85 0,0242 24,24 41,25
50 0,05 7,58 0,0379 37,88 26,40
60 0,06 10,91 0,0545 54,54 18,33

Некоторые замечания

Можно усовершенствовать прибор, используя дополнительные детали:

  • гипс
  • стальная проволока
  • выключатель

Стальную скобу не придётся никак приспосабливать внутри корпуса — она нужна только в качестве удобной подставки для прибора. Выключатель позволит легко управлять прибором. Его можно установить на боку корпуса баночки, добавив туда пару винтиков. А вот гипс поможет придать прочности и сохранности нихромовой проволочке. Высыпаем сухой гипс в воду, разводим его и окунаем в раствор скрученную спиральку, после чего высушиваем под слоем гипса на воздухе, до затвердевания. Теперь нагрев будет более мягким, а прибор более долговечным и безопасным. Главное не забыть оставить на концах контакты для подсоединения проводов.

Итог: У нас получился простой и эффективный прибор для обогрева помещения. Если всё правильно выполнено — то он будет безопасен в эксплуатации и станет потреблять совсем немного мощности.

Простой самодельный панельный обогреватель: схема сборки, фото изготовления.

С наступлением холодов тема отопления жилых помещений становится актуальной, и многие задаются вопросом, как дополнительно обогреть, жилую комнату, рабочее помещение, дачу или гараж с помощью обогревателя. В этой статье мы рассмотрим, как сделать простой, дешёвый и в то же время безопасный электрообогреватель.

Виды спиралей

Внутриматочные спирали изготавливаются из пластика и бывают двух видов: спирали, содержащие медь (серебро) и спирали, содержащие гормоны. Их размер – 3X4 см. Выбор метода контрацепции и самой спирали происходит на приеме у гинеколога. Самостоятельно этого делать не стоит. Внутриматочная спираль устанавливается гинекологом во время месячных . Она невелика по размерам и напоминает по форме букву Т.

Медная спираль изготавливается из медной проволоки . Ее особенностью является способность действовать на матку таким образом, что яйцеклетка не может к ней прикрепиться. Этому способствуют два медных усика.

Гормональная спираль имеет контейнер, который содержит прогестин. Этот гормон предотвращает наступление овуляции. В случае использования гормональной внутриматочной спирали сперматозоиды не могут оплодотворять яйцеклетку. Как отмечают женщины, при использовании такой спирали менструации становятся более скудными и менее болезненными. Однако вреда это не приносит, потому что связано с действием гормонов, находящихся внутри спирали. Гинекологи рекомендуют женщинам, страдающим болезненными месячными , установку гормональной спирали.

Типы нагревательных элементов

Есть много разных видов нагревательных элементов. Иногда спирали из нихрома или фехрали используется как таковой; в других случаях спирали встроены в керамический материал, чтобы сделать его более прочным и долговечным (керамика отлично справляется с высокими температурами и не боится большого нагрева и охлаждения), или изолированы в миканите и помещены в металлический корпус (к примеру, кольцевые и плоские нагреватели для экструдеров).

Размер и форма нагревательного элемента в значительной степени определяется размерами прибора, внутри которого он должен помещаться, и площадью, на которой он должен производить тепло. Щипцы для завивки волос имеют короткие спиральные элементы, потому что они должны выделять тепло через тонкую трубку, вокруг которой можно обернуть волосы. Электрические радиаторы имеют длинные стержневые элементы, потому что они должны рассеивать тепло через большую площадь комнаты. Электрические плиты имеют спиральные нагревательные элементы, подходящие по размеру для нагрева кастрюль и сковородок (часто элементы плиты покрыты металлическими, стеклянными или керамическими пластинами, чтобы их было легче чистить). Нагреватели нефтепродуктов для больших емкостей или цистерн представляют собой огромные металлические трубы с керамическими нагревательными элементами, потому что они должны производить мягкий нагрев на большой площади соприкосновения с легко воспламеняемыми жидкостями.

На фото: два вида нагревательных элементов. 1) Светящиеся нихромовые ленты внутри инфракрасного кварцевого нагревателя для сушки. 2) Вы можете четко видеть спиральный электрический ТЭН внизу чайника. Он никогда не накаляется докрасна так же, как провода ик обогревателя, потому что обычно он недостаточно нагревается. Однако, если вы достаточно глупы, чтобы включить чайник без воды внутри (как я однажды случайно сделал), вы обнаружите, что элемент чайника вполне может раскалиться докрасна. Этот опасный и катастрофический эпизод навсегда повредил мой чайник и мог поджечь мою кухню.

В некоторых приборах нагревательные элементы хорошо видны: в электрическом тостере легко заметить ленты из нихрома, встроенные в стенки тостера, потому что они раскалены докрасна. Электрические радиаторы выделяют тепло с помощью светящихся красных полос (по сути, просто спиральные, проволочные нагревательные элементы, которые выделяют тепло за счет излучения), в то время как электрические конвекторные нагреватели обычно имеют концентрические круглые нагревательные элементы, расположенные перед электрическими вентиляторами (поэтому они быстрее переносят тепло за счет конвекции).

У некоторых приборов есть видимые элементы, которые работают при более низких температурах и не светятся; электрические чайники, которым никогда не нужно работать выше точки кипения воды (100 ° C), являются хорошим примером. В других приборах нагревательные элементы полностью скрыты, как правило, из соображений безопасности. Электрический душ и щипцы для завивки волос имеют скрытые элементы, поэтому (надеюсь) нет риска поражения электрическим током.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector