Расчет снеговой нагрузки на кровлю

Плоская крыша каркасника: двутавр, фермы или стропила

Вариант 1. Двутавровое деревянное перекрытие

Отличный выбор как для межэтажного перекрытия, так и для плоской кровли. Из её плюсов: это огромная несущая способность, способность перекрывать очень большой пролёт без опор и небольшой вес.

Минусы: она стоит запредельных денег по сравнению с фермами или стропилами и время сопротивления огню слишком мало. Таких балок понадобилось бы больше чем стропил.

Вариант 2. Фермы на МЗП (гвоздевых пластинах)

Еще один вариант это фермы собранные на гвоздевые пластины. Они же металлозубчатые пластины, сокращенно МЗП. Чтобы их собрать нужен пресс, но это не самый большой минус. Импровизированный пресс можно изготовить из домкратов.

Когда я посчитал стоимость ферм на гвоздевых пластинах для дома 6х12, то ценник был дороже тысяч на 20 рублей. Но всё равно этот вариант достойный изучения. Так как утеплить такие фермы будет проще, чем следующий вариант.

Вариант 3. Стропила

Мы остановились на стропилах из доски 150х50мм.

Помимо низкой стоимости задача стропил нести достаточно большую нагрузку.

Конструкция стропил достаточно нестандартная.

Расчет снеговых нагрузок в соответствии строительным нормам ↑

Без учета климатических особенностей зим в данном регионе крыша может попросту не выдержать выпавшего количества снега, стропильные конструкции деформируются с дальнейшими разрушениями.

На заметку
Вес свежего выпавшего снега составляет порядка 100 килограмм на 1 кубометр объема, мокрый тяжелее – 300 кг/м³.

Зная массу осадков, уже можно рассчитать воздействие снега на поверхность по толщине выпавшего  покрова. Для чего в СНиПе (строительные нормы и правила 2.01.07-85 «Нагрузки и воздействия» параграф 10) включены формулы, по которым можно произвести расчеты. Но, следует знать именно среднюю толщину снежного покрова для конкретного региона и соответственно создаваемые воздействия.

Скачать

  СНиП 2.01.07-85* «Нагрузки и воздействия» (1,1 MiB, 2 527 hits)

Чтобы можно было сделать точный расчет, составлена карта страны, где территория разбита на 8 регионов с приблизительно одинаковыми условиями.

  1. Например, для Москвы и Подмосковья нагрузка составляет приблизительно 180/126 кг/м³,
  2. район Нижнего Новгорода – 240/168 кг/м³,
  3. а в горных районах этот показатель может варьироваться 560/392 кг/м³.

С учетом таких данных проводится расчет полной снеговой нагрузки на кровлю с применением такой формулы:

S – это искомая полная снеговая нагрузка;

S расч – расчетная снеговая нагрузка (смотрим по карте, уточняем конкретно по своему региону);

µ – коэффициент, учитывающий угол наклона кровли.

Значение уклона кровли берут зависимо от следующих показателей:

  • При наклоне скатов менее чем на 25 градусов – единица;
  • Наклон от 25 до 60 градусов – коэффициент 0,7;
  • При уклонах скатов более чем на 60 градусов, данный показатель не учитывается вообще.

То есть, имея такие данные довольно просто сделать расчеты. Например, для района Нижнего Новгорода расчетная снеговая нагрузка имеет показатель 240 кг, дом проектируется со скатами под углом в 30 градусов, значит, подсчет имеет следующий вид – 240×0,7=168 кг/м³. После чего можно подобрать соответствующие детали стропильной конструкции кровли.

Плоские типы крыш

Подобные типы конструкций крыши неприемлемы для регионов с большим количеством осадков в холодное время года, так на такой поверхности будут накапливаться большие объемы снега. Результатом станет чрезмерное давление снега на конструкцию. В областях с теплым климатом, кровли подобного типа должны иметь запас прочности, а также сплошную обрешетку. Обязательным условием является монтаж подогрева карнизов, для удаления осадков со свесов через водосточные системы.

Совет
Уклон плоскостей скатов в сторону водосточных воронок при таких ситуациях должен превышать показатель в 2 градуса, что обеспечит полноценный сток осадков.

Проектируя строительство гаражей, хозяйственных построек или беседок с плоским накрытием, руководствуются такими же правилами и расчетами снеговых нагрузок, как и для обычных двухскатных (или более) типов крыш. Однако для плоских кровельных конструкций на таких постройках лучше подобрать стропила с более толстых материалов, а обрешетку монтировать сплошной.

Ветровая нагрузка

Ветровая нагрузка на крышу при боковом давлении воздушного потока несет столкновение с крышей и со стеной здания. Завихрение потока, происходящее у стены, частично уходит к фундаменту, другая часть потока по касательной стены производит удар о свес крыши. Атака ветрового потока огибает касательно конек крыши с захватом спокойных молекул воздуха со стороны подветренной и уходит прочь. Исходя из этого, сил способных сорвать кровлю или опрокинуть ее, возникает сразу три. Одна – сила подъема, которая образуется при разности давления воздуха со стороны подветренной, и две другие силы – касательные со стороны наветренной.

Возникает еще одна сила, способная вдавить склон крыши, действующая перпендикулярно скату. Касательные и нормальные силы могут изменять свое значение в зависимости от угла наклона ската. Понятно, что чем больше величина угла наклона кровли, тем большее влияние принимают силы нормальные и меньше касательные. На крышах пологих принимают большое значение касательные силы, увеличиваясь в своей подъемной силе со стороны подветренной, таким образом, уменьшается нормальная сила со стороны наветренной.

А теперь давайте посмотрим, как происходит расчет нагрузки. Кстати, на карте Украины вам вновь придется переводит Паскали в килограммы, как мы это делали при расчете снеговой нагрузки.

Расчет ветровой нагрузки w, зависящей от высоты z над землей, определяется по такой формуле:  Wр = W?k(z)?c, в которой W – расчетное значение давления ветра, определяемое по карте «Изменениях к СНиП  2.01.07-85»; а коэффициент k учитывает изменения ветрового давления для z, определим по таблице; коэффициент c – учитывает изменения всех направлений давления нормальных сил, в зависимости от расположения ската к наветренной или подветренной сторон.

Аэродинамические коэффициенты со знаком «плюс» определяют направление создаваемого давления ветра на поверхность (давление активное), «минус» — от соответствующей поверхности (отсос). Линейной интерполяцией находятся промежуточные значения нагрузок. При затрудненном использовании таблиц 3, 4 на рисунке про аэродинамические коэффициенты ветровой нагрузки, практикуют выбор наибольшего значения коэффициентов для определенных углов наклона крыш.

Крыши с крутым углом наклона, ветер разрушает опрокидыванием, пологие крыши – срываются. Для избегания разрушения, строители нижние концы стропильных ног прикрепляют скруткой из проволоки к ершу, который вбит в стену. Ерш представляет собой штырь из металла с насечками предотвращающие выдергивание, изготавливают способом ковки. Если неизвестен факт стороны, с которой ожидается сильный ветер, то лучше стропильные ноги прикрутить через одну по периметру всего здания – стороны с умеренным ветром, и каждую ногу – в районе с сильным воздушным давлением. Укрепление стропил можно произвести другим образом – концы проволоки заложить в укладку стен во время строительства. Чтобы не испортить внешний фасад, концы проволоки выпустить внутрь чердачного помещения. Удобна в таком использовании отожженная стальная проволока, с диаметрами начиная от 4 мм и до 8 мм.

Общую устойчивость каркаса крыши обеспечивают подкосами, раскосами и связками по диагонали. Способствует стропильной системе использование устройства обрешетки.

Вот таким образом и происходит расчет ветровой нагрузки на крышу.

Если вы внимательно читали, то должны были понять, что вообще их себя представляют ветровая и снеговая нагрузка для вашего будущего дома. Если отнесетесь не серьезно к этому делу, то может произойти беда. Это еще не все виды нагрузок. Оставшиеся виды описываются в другой статье.

Снег на путях…

«…Но едва Владимир выехал за околицу в поле, как поднялся ветер и сделалась такая метель, что он ничего не взвидел. В одну минуту дорогу занесло; окрестность исчезла во мгле мутной и желтоватой, сквозь которую летели белые хлопья снегу; небо слилося с землею…»

А. Пушкин.

Свежевыпавший снег обычно очень рыхлый, снежинки почти не связаны между собой, и даже небольшой ветер (2…4 метра в секунду) приводит их в движение. С увеличением скорости ветра количество переносимого снега быстро возрастает. Основная масса снега (почти 90 процентов) перемещается над землей на высоте не более 20 сантиметров. Эти тонкие, непрерывно меняющиеся струйки снега называются «поземкой». Чтобы ее приостановить, не надо создавать высокие препятствия. Даже оставшаяся в поле стерня хорошо задерживает гаков перенос снега.

Но если ветер усиливается, снег поднимается выше, до нескольких метров, начинается так называемая низовая метель. Верхней метелью называют снегопад, при котором снежинки падают и остаются лежать на месте. Так бывает, если падает мокрый снег, даже при сильном ветре он ложится ровным слоем, не разрушаемым ветром.

Чаще всего путь снежинки не заканчивается в том месте, где она впервые коснулась Земли. Если скорость ветра достаточно велика, упавшая снежинка вновь поднимается для того. чтобы снова упасть… При этих скачках снежинка дробится на части, выбивает из поверхностного слоя другие частицы, которые тоже включаются в движение. Такой тип переноса, когда в воздухе одновременно находятся и падающие и поднятые с поверхности снежинки, снеговеды называют общей метелью, или, если скорость ветра и масса переносимого снега очень велики, пургой. Во время пурги совершенно невозможно разобрать, падает ли снег сверху, поднимается ли с земли или это смешение тех и других снежинок. При ветре 16…20 метров в секунду поднимается пурга, при которой уже в нескольких метрах невозможно ничего рассмотреть и совсем легко заблудиться.

Пурга страшна еще тем, что мельчайшие разломанные, перетертые частички снежинок обладают исключительной проникающей способностью, они забиваются во все поры одежды, спастись от них можно только в специальном штормовом снаряжении. Вспомните описание снежных буранов у Пушкина, Аксакова, Куприна

И обратите внимание на то, что везде речь идет о буранах степной или лесостепной зоны нашей страны, а не о западных – более снежных районах. И это не случайно

Мягкий климат, большая влажность воздуха в западных районах способствуют закреплению снега. Во всей западной части европейской территории страны серьезные заносы – это редкое, почти исключительное событие, хотя осадков зимой выпадает немало.

В зоне степей снег отличается сухостью, ветер легко переносит его на большие расстояния, наметая сугробы, хотя средний снежный покров совсем невысок.

Метель, буран, пурга – эти природные явления не потеряли своего грозного смысла ив наши дни, они опасны и для современного транспорта. Измерения показывают, что во время сильной метели через погонный метр дороги за минуту проносится 8…10 килограммов снега. Для борьбы с заносами и для расчистки путей в нашей стране ежегодно затрачиваются десятки миллионов рублей. Работают снегоуборочные машины различных конструкций, снег разметают, скалывают, счищают, вывозят. Для защиты железнодорожных и автомобильных путей от снежных заносов ставят различные виды ограждений, задерживающих снег. До недавнего времени особенно широко были распространены переносные легкие дощатые щиты, их устанавливали на зиму вдоль участков, на которых часты метели. Щиты тормозят, снижают скорость потока ветра и снега, снег перелетает через щит и с подветренной стороны ложится полосами, которые в 10…15 раз длиннее, чем высота щита. При сильном ветре через стандартный железнодорожный щит площадью 2 x 2 метра за сутки переносится до 15 тонн снега! Однако этот способ снегозащиты достаточно дорог (щиты быстро изнашиваются и требуют ремонта) и трудоемок (перестановка их требует много рабочей силы). Поэтому вместо щитов сейчас почти всюду вдоль дорог сажают «живые изгороди» – в несколько рядов кустарники и деревья.

Однако искусственное перераспределение снежного покрова вдоль дорог имеет и свои отрицательные свойства. В непосредственной близости от полотна дороги скапливаются огромные массы снега, которые весной приводят к переувлажнению грунтов, к размыву полотна, к тому, что дорожные откосы оплывают, оседают, перекашиваются.

Применение данных о снеговой нагрузке при создании проекта кровли

Мы выяснили, как рассчитать вес снега на крышу. Теперь гораздо важнее правильно применить рассчитанный коэффициент при проектировании всей кровли и особенно ее стропильной части.

Такая важная и основополагающая часть кровли, как мауэрлат, в принципе, не зависит от снеговой нагрузки, так как ложится на стены и служит для распределения давления стропил на стены дома

Но для качественной и прочной крыши важно учесть некоторые моменты

  • Предпочтительнее применять для мауэрлата брус с квадратным сечением.
  • Установка производится с условием, что до угла несущей стены должно остаться 3-5 см. То есть мауэрлат примерно на 10 см короче стены, на которую он укладывается.
  • При тонких стенах мауэрлат должен быть уложен с перекрытием стены на 4-5 см, то есть быть толще ее на 10 см. В этом случае брус хорошо распределяет нагрузку от стропильной системы и не допускается разрушение краев стены.

Важным моментом в проектировке крыши является расчет стропил. При выборе их сечения и шага учитываются следующие показатели:

длина стропил;
вес планируемого кровельного материала;
снеговая нагрузка;
при планировании стропильной системы кроме веса снега важно произвести расчет ветровой нагрузки на кровлю. Особенно важен этот момент в ветреных регионах или при отдельно стоящем от остальных зданий доме.

Сечение и шаг стропил должны быть рассчитаны таким образом, чтобы не только выдерживать названную выше нагрузку, но и обладать запасом большей прочности

Особенно важно здесь обратить внимание на длину стропильных ног. От этого параметра зависит такой момент, как прогиб бруса

Чем длиннее стропильная нога, тем больше будет ее прогиб. Узнать эту величину необходимо заранее в специализированном справочнике строительных материалов, где собраны значения прогибов разных сечений бруса на погонный метр. Допустимым является прогиб не более 10-15 мм. При большем значении сечении балки увеличивается на 20%.

Не менее важно учесть вес такого кровельного элемента, как обрешетка. Если планируется использование мягкой кровли и создание под нее сплошной обрешеточной системы, то подобная конструкция будет также иметь значительный вес, который в обязательном порядке должен быть учтен при проектировании кровли.

Снеговой мешок и температура воздуха

«Cнеговым мешком» называет тот снег на крыше, который превышают средние нормативы на толщину, характерные для конкретной местности. Или более просто: если выше 50 см на глаз.

Обычно снеговые мешки скапливается на не ветреной стороне крыши и в местах, где расположены слуховые окна и другие элементы крыши. Как раз в таких местах и ставят сдвоенные и усиленные стропильные ноги, либо вообще делают сплошную обрешетку. Кроме того, здесь по всем правилам должна быть специальная подкровельная подложка, чтобы избежать протечек.

Поэтому в более теплых регионах России плотность снега получается всегда больше, чем в холодных. Ведь в таких местностях зимой снег уплотняется под действием солнца, верхние слои сугроба давят на нижние. Учитывайте также, что снег, который перебрасывает с места на место увеличивает свой удельный вес минимум в два раза. Благодаря всему этому средний удельный вес обычно равен посреди зимы 280 + — 70 кг на кубический метр.

А весной в период обильного таяния мокрый снег способен весить почти тонну! Можете ли вы себе представить, что на вашей крыше находится одновременно сразу несколько тонн снега? Вот почему тот факт, что в процессе строительства крыши на стропильной системе висят сразу несколько рабочих и это якобы говорит о ее прочности, во внимание брать не стоит. Ведь пару человек точно не весят сразу несколько тонн

Учитывайте, что в расчете нормативной нагрузки также принимается во внимание средняя температура воздуха в январе. Какая именно у вас, смотрите уже по карте СП 20.13330.2011:

Если окажется, что у вас средняя температура в январе меньше, чем 5 градусов по Цельсию, то коэффициент снижения снеговой нагрузки 0,85 тогда не применяется. Ведь из-за такой температуры снег зимой постоянно будет подтаивать снизу, образовывая наледь и задерживаясь на крыше.

И, наконец, чем больше угол ската, тем меньше на нем всегда остается снега, ведь тот постепенно сползает под собственным весом. А на тех крышах, у которых угол наклона больше или равен 60 градусов, снега не остается вообще. Поэтому в таком случае коэффициент µ должен быть равен нулю. В это же время для ската с углом 40° µ равен 0,66, 15° – 0,33 и для 45° градусов – 0,5.

Расчетная снеговая нагрузка

Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:

  • скаты крыши могут быть наклонными, снег будет разложен на большей площади;
  • ветра, сдувающие снег с кровли, в каждой местности свои;
  • окружающие строения изменяют влияние ветров;
  • теплопроводность крыши может привести к ускоренному таянию и снижению веса.

Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.

Формула расчета

Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.

При расчете нормативная нагрузка S g умножается на три коэффициента:

  • µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
  • c t – термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
  • c b – ветровой коэффициент, учитывающий снос снега ветром.

Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.

Определение коэффициентов

Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.

Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:

  1. На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
  2. Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
  3. На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).

Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.

Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:

  1. Есть постоянные ветра со скоростью от 4 м/с и выше.
  2. Средняя зимняя температура воздуха ниже 5С.
  3. Угол ската кровли от 12° до 20°.

Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4, обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.

Пример расчета нагрузки

Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.

Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.

Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.

Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м2

Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м2.

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

1. Расчет несущих элементов покрытия

Стропильные ноги рассчитывают как свободно лежащие балки на двух опорах с наклонной осью. Нагрузка на стропильную ногу собирается с грузовой площади, ширина которой равна расстоянию между стропильными ногами. Расчетная временная нагрузка q должна быть расположена на две составляющие: нормальную к оси стропильной ноги и параллельно к этой оси.

2.1.1. Расчет обрешетки

Принимаем обрешетку из досок сечением 50´50 мм (r = 5,0 кН/м), уложенных с шагом 250 мм. Древесина — сосна. Шаг стропил 0,9 м. Уклон кровли 35 0 .

Расчет обрешетки под кровлю ведется по двум вариантам загружения:

а) Собственный вес кровли и снег (расчет на прочность и прогиб).

б) Собственный вес кровли и сосредоточенный груз.

1.Принимаем бруски 2-го сорта с расчетным сопротивлением Ru=13 МПа и модулем упругости Е=1´10 4 МПа.

2.Условия эксплуатации Б2 (в нормальной зоне), mв=1; mн=1,2 для монтажной нагрузки при изгибе.

4.Плотность древесины r=500 кг/м 3 .

5.Коэффициент надежности по нагрузке от веса оцинкованной стали gf=1,05; от веса брусков gf=1,1.

6.Нормативный вес снегового покрова на 1м 2 горизонтальной проекции поверхности земли S=2400 Н/м 2 .

Расчетная схема обрешетки
Сбор нагрузки на 1м.п. обрешетки, кН/м

где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной

поверхности земли, принимаемое по табл. 4 , для IV снегового рай-

m — коэффициент перехода от веса снегового покрова земли к

снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .

При загружении балки равномерно распределенной нагрузкой от собственного веса и снега наибольший изгибающий момент равен:

При углах наклона кровли a³10° учитывают, что собственный вес кровли и обрешетки равномерно распределен по поверхности (скату) крыши, а снег — по ее горизонтальной проекции :

Mx = M cos a = 0.076 cos 29 0 = 0.066 кН´м

My= M sin a = 0.076 sin 29 0 = 0.036 кН´м

Прочность брусков обрешетки проверяют с учетом косого изгиба по формуле:

где Mx и My — составляющие расчетного изгибающего момента относительно главных осей X и Y.

Ry=13 МПа — расчетное сопротивление древесины изгибу.

gn=0,95 — коэффициент надежности по назначению.

Момент инерции бруска определяем по формуле:

Прогиб в плоскости, перпендикулярной скату:

Прогиб в плоскости, параллельной скату:

где Е=10 10 Па — модуль упругости древесины вдоль волокон.

Проверка прогиба:

где

При загружении балки собственным весом и сосредоточенным грузом наибольший момент в пролете равен:

Проверка прочности нормальных сечений:

где Ry=13 МПа — расчетное сопротивление древесины изгибу.

gn=0,95 — коэффициент надежности по назначению.

Условия по первому и второму сочетаниям выполняются, следовательно принимаем обрешетку сечением b´h=0,05´0,05 с шагом 250 мм.

2.1.2. Расчет стропильных ног

Рассчитаем наслонные стропила из брусьев с однорядным расположением промежуточных опор под кровлю из оцинк. кр. железо. Основанием кровли служит обрешетка из брусков сечением 50


=0,25 м

=1,0 м

Район строительства – г. Вологда.

Расчетная схема стропильной ноги

Бруски обрешетки размещены по стропильным ногам, которые нижними

концами опираются на мауэрлаты (100

Производим сбор нагрузок на 1 м 2 наклонной поверхности покрытия, данные заносим в таблицу 2.2.

Таблица 2.2Сбор нагрузки на 1м.п. стропильной ноги, кН/м

где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимаемое по табл. СНиП 4 , для IV снегового района S = 2,4 кПа;

m — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .

Производим статический расчет стропильной ноги как двухпролетной балки, нагруженной равномерно распределенной нагрузкой. Опасным сечением стропильной ноги является сечение на средней опоре.

Изгибающий момент в этом сечении:

Вертикальное давление в точке С, равное правой опорной реакции двухпролетной балки составляет:

При симметричной нагрузке обоих скатов вертикальное давление в точке С удваивается:

Раскладывая это давление по направлению стропильных ног, находим сжимающее усилие в верхней части стропильной ноги:

Растягивающее усилие в ригеле равно горизонтальной проекции усилия N.

Проверяем сечение стропильной ноги.

Из условия прочности при изгибе определяем требуемый момент инерции, вводя коэффициент 1,3 для возможности восприятия сечением продольной силы и момента.

Сечение Æ16см удовлетворяет требованиям. Wx=409,6 см 3 , Jx=3276,8 см 4 . Производим проверку сечения на сжатие с изгибом:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector