Теплопроводность через стенку

Содержание:

Теплопроводность через цилиндрическую стенку (граничные условия первого рода)

Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа «труба в трубе», кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.

Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:

Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:

Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:

Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:

qL = Q/L = πΔT / (1/2λ * ln(d2/d1));

q1 = Q/S1 = Q/πd1L

Важные моменты для применения утеплительных материалов

При проектировании жилища необходимо учитывать погодные условия местности. Если данные не учтены, термическое сопротивление теплопередаче может быть недостаточным, что позволит холоду проникать сквозь стены. Обычно, если такое происходит, используются утеплители. Иногда утепление производится внутри дома, но обычно оно проводится по наружным стенам. Утепляются несущие элементы и части, расположенные в непосредственном контакте с улицей.
Утепление жилища

Показатели современных теплоизоляционных материалов очень высокие, потому их не нужно использовать в большом количестве. Обычно для утепления хватает толщины до 10 мм. Не стоит забывать о паропроницаемости стен, дверей и утеплительных компонентов. Правила строительства требуют, чтобы этот показатель повышался из внутренних частей к внешним. Потому утеплять газобетонные или пенобетонные стены можно только минеральной ватой, показатели которой верны для приведенных требований.
Внутреннее утепление

Кроме потерь тепла через стены дома оно может уходить через кровлю

Поэтому важно утеплять не только наружные элементы, но и уложить материал над потолком, чтобы жилье было надежно утеплено. Если нет возможности применять необходимый материал, можно сконструировать зазор для вентиляции

В любом случае не стоит забывать, что теплосопротивление для материалов является одной из важнейших величин. Обязательно учитывайте его при возведении нового дома.

Влияние температуры окружающей среды

При увеличении температуры окружающей среды увеличивается и температура печатной платы с установленным на ней светодиодом. Чтобы компенсировать рост температуры корпуса светодиода, необходимо увеличить размер печатной платы и/или размер радиатора, что часто бывает затруднительно из-за ограничений в размере корпуса готового устройства. Возможно, придется поступиться некоторыми светотехническими параметрами при поиске компромисса в решении данной задачи. При этом необходимо учитывать, что пиковая длина волны может изменяться примерно на 0,1 нм на каждый градус C изменения относительно комнатной температуры (25°C). Графики на рисунках 13-16 показывают изменение длины волны на красном, желтом, зеленом и синем светодиоде соответственно, а график на рис.17 – на белом светодиоде. Видно, что с нагревом свечение будет казаться голубым.

Рис. 12

Рис. 13

Рис. 14

Рис. 15

Рис. 16

Рис. 17

Световой поток также меняется в значительных пределах (Рис.18).

Необходимо предусмотреть уменьшение прямого тока через светодиод, если невозможно снизить тепловое сопротивление при повышении температуры окружающей среды.

Рис. 19

Рис. 20

Показатели теплопроводности

Любой элемент в природе имеет различную степень проводимости. Тепло проходит сквозь него в зависимости от скорости движения частиц, которые способны передать температурные колебания. Чем частицы ближе находятся одна к другой, тем теплообмен будет проходить быстрее. Получается, что чем более плотный материал, тем быстрее он будет нагреваться или остывать. Плотность является основным фактором теплопередачи, показывая ее интенсивность.
Таблица с данными для камня

Выражается данный показатель коэффициентом теплопроводности. Обозначение буквенное производится символом «λ». Единица измерения Вт/(м*Со). Чем больше численные данные этого коэффициента, тем лучше материал проводит тепло. Существует величина, обратная проводимости тепла, которая называется тепловое термическое сопротивление. Единица измерения: м2*Со/Вт. Буквенное обозначение «R».

Данные по регионам

Нормируемое сопротивление можно посмотреть в справочниках

Важно придерживаться норм, чтобы не пришлось дополнительно утеплять дом, так как холод легко проникает сквозь стены. Правильному теплообмену, такому, какой бы подходил для данного региона, должно предшествовать утепление стен и верное использование материалов

Значения по регионам

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Таблица теплопроводности материалов на Кл…

Материал Плотность, кг/м3 Теплопроводность, Вт/(м·град) Теплоемкость, Дж/(кг·град)
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150

Как применяются показатели в строительстве

Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода

Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.

Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче».
Таблица с данными для стеклопакетов

Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.

Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.

Тепловое сопротивление кристалл — окружающая среда

14.04.2014 | Рубрика: Параметры ОУ

Параметры операционного усилителя — Тепловое сопротивление кристалл — окружающая среда

Тепловое сопротивление кристалл — окружающая среда (θJA) определяется как отношение разности температур между кристаллом и окружающей прибор средой к рассеиваемой прибором мощности. Измеряется тепловое сопротивление в градусах Цельсия на ватт.

Тепловое сопротивление между кристаллом и окружающей средой складывается из теплового сопротивления между кристаллом и корпусом (θJC) и теплового сопротивления между корпусом и окружающей средой (θCA).

θJA является лучшим показателем для оценки максимально допустимой рассеиваемой мощности, когда корпус ОУ не имеет тепловой связи с другими элементами конструкции.

Значение θJA указывается в справочной документации для различных корпусов ОУ Температуру кристалла ОУ можно рассчитать по формуле

ТА — температура окружающего воздуха;

TJ — температура кристалла;

PD — рассеиваемая прибором мощность;

θJC — тепловое сопротивление кристалл — корпус;

θCH — тепловое сопротивление корпус — радиатор;

θHA — тепловое сопротивление радиатор — окружающий воздух;

θJA — тепловое сопротивление кристалл — окружающий воздух.

Конструирование радиаторов основывается на результатах измерений их теплового сопротивления θHA, выполняемых их изготовителями, и осуществляется по аналогии с электрическими цепями: разность температур при этом эквивалентна разности напряжений, тепловое сопротивление является аналогом электрического сопротивления, а мощность — аналогом тока.

На рисунке приведено сравнение двух радиаторов при двух разных значениях рассеиваемой мощности. Точкой отсчёта является температура окружающего воздуха (0 В для электрического эквивалента). Так как температура внутри корпуса прибора и в разных условиях его работы может изменяться в широких пределах, в качестве ТА используется максимальное ожидаемое значение температуры окружающего воздуха.

Тепловое сопротивление и его электрический эквивалент.

При выполнении тепловых расчётов первый шаг — это определение температуры радиатора. Для этого надо выделяемую прибором мощность умножить на значение теплового сопротивления радиатор — окружающий воздух. Следующий шаг — определение температуры корпуса прибора и так далее.

Как следует из таблицы, различие тепловых сопротивлений радиатор — окружающая среда и корпус — радиатор приводит к большому различию температур кристаллов при одной и той же рассеиваемой мощности: 37 и 158°С

Отсюда следует, что очень важно правильно выбрать радиатор для эффективного охлаждения мощных приборов

Установка вентиляторов значительно увеличивает эффективность радиаторов. По этой причине практически во всех персональных компьютерах радиатор процессора обдувается вентилятором.

Теплопередача в однородном ограждении при установившемся потоке тепла

Представим
себе условную ограждающую конструкцию,
состоящую из однородного материала,
через которую в холодное время года
проходит постоянный тепловой поток. В
этом случае график распределения
температуры внутри ограждения выглядит
следующим образом (рис. 1).

Рис.
1. Распределение температур в однородной
ограждающей конструкции при постоянном
тепловом потоке

При
передаче тепла через ограждающую
конструкцию происходит падение
температуры от tвдо
tн.
При этом общий температурный перепад
tв
tнсостоит
из суммы трех температурных перепадов:

  1. температурный
    перепад tвв
    возникает из-за того, что температура
    внутренней поверхности ограждения τв
    всегда
    на несколько градусов ниже, чем
    температура воздуха в помещении tв;

  2. τвн
    температурный перепад в пределах
    толщины ограждающей конструкции;

  3. τнtн
    — температурный перепад, возникающий
    вследствие того, что температура
    наружной поверхности ограждения τннесколько
    выше температуры наружного воздуха
    tн.

Каждый
из этих температурных перепадов вызван
конкретным сопротивлением переносу
тепла:

  1. перепадtвв
    сопротивлением
    тепловосприятию

    внутренней поверхности ограждения Rв;

  2. перепад
    τвн
    термическим
    сопротивлением конструкции
    Rк;

  3. перепад
    τнtн
    сопротивлением
    теплоотдаче

    наружной поверхности ограждения Rн.

Сопротивления
тепловосприятию и теплоотдаче иногда
называют сопротивлениями теплообмену;
они имеют такую же размерность, как и
термическое сопротивление, т. е. м2·
оС/Вт.

Общее
(приведенное) термическое сопротивление
однослойной ограждающей конструкции
Ro,
м2·
оС/Вт,
равно сумме всех отдельных сопротивлений,
т. е.

,
(3)

где
αв
коэффициент теплоотдачи внутренней
поверхности ограждающих конструкций,
Вт/(м2·оС),
определяемый по табл. 4* , см. также
табл. 5 настоящего пособия;

αн
коэффициент теплоотдачи наружной
поверхности ограждающих конструкций,
Вт/(м2·оС),
определяемый по табл. 6* , см. также
табл. 6 настоящего пособия;

Rк
термическое сопротивление однослойной
конструкции, определяемое по формуле
(2).

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Термическое сопротивление

2

R = δ/λ        (6),

  • где δ — толщина слоя, м;
    λ — расчетный коэффициент теплопроводности материала слоя, Вт/(м×°С), принимаемый согласно 5.3, по таблице Д1

k

Rk = R1 + R2 + … + Rn + Ra.l,        (7)

  • где R

1, R2 + … + Rn — термические сопротивления отдельных слоев ограждающей конструкции, м2×°С/Вт, определяемые по формуле (6)
Ra.l — термическое сопротивление замкнутой воздушной прослойки, принимаемое по таблице 7 (СП 23-101-2004).

Таблица 7 (СП 23-101-2004) . Термическое сопротивление замкнутых воздушных прослоек

Толщина воздушной прослойки, м Термическое сопротивление замкнутой воздушной прослойки Ra.l, м2×°С/Вт
горизонтальной при потоке теплоты снизу вверх и вертикальной горизонтальной при потоке теплоты сверху вниз
при температуре воздуха в прослойке
положительной отрицательной положительной отрицательной
0,01 0,13 0,15 0,14 0,15
0,02 0,14 0,15 0,15 0,19
0,03 0,14 0,16 0,16 0,21
0,05 0,14 0,17 0,17 0,22
0,1 0,15 0,18 0,18 0,23
0,15 0,15 0,18 0,19 0,24
0,2 — 0,3 0,15 0,19 0,19 0,24
Примечание — При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги термическое сопротивление следует увеличивать в два раза.
  • а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в теплотехническом расчете не учитываются;
    б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи a

ext равным 10,8 Вт/(м2×°С).

1.2.1. Расчет кипятильника Задание

Рассчитать
кипятильник для образования паров
уксусной кислоты. Расход кислоты
составляет 2,5 кг/с. Давление атмосферное.
Обогрев ведется водяным насыщенным
паром давлением 3,2 атм.

Рассчитываем
количество тепла, необходимое для
процесса кипения уксусной кислоты

Q2
= G2
r2,

где
r2
– удельная теплота парообразования
уксусной кислоты при температуре
кипения; t2
= 118 C
[3, 541],
Дж/кг; G2
– расход уксусной кислоты, кг/c.

Q2
= 2,5 ∙ 400000 = 1∙106 Вт.

По
давлению греющего пара [3, 548]
определяем температуру греющего пара,
t1
= 135 C.

Средняя
разность температур теплоносителей
равна t
= t1
– t2
= 135 – 118 = 17 C.

Определяем
предварительно поверхность кипятильника,
для чего задаемся значением коэффициента
теплопередачи, К = 300 Вт/м2∙К.

F
=
=

=
196 м2.

По поверхности
(приложение Б13) выбираем кипятильник с
длиной трубы Н = 3м.

Коэффициент
теплоотдачи для конденсирующегося
греющего водяного пара находим по
формуле

1
= 1,21∙ λ1∙∙q-1/3
,

где
λ1
теплопроводность конденсата, Вт/м∙К
(таблица А22); µ1
– динамический коэффициент вязкости
конденсата Па∙с (таблица А22); r1
– удельная теплота конденсации греющего
пара при давлении 3,2 атм, Дж/кг (таблица
А21); q
– удельный тепловой поток, Вт/м2.

1
= 1,21∙ 0,68∙∙q-1/3= 2,55∙105∙
q-1/3.

Коэффициент
теплоотдачи для кипящей уксусной кислоты
находим по формуле

2
= b∙,

где b
– коэффициент, определяемый следующим
выражением

b
=
,

где
λ2
– теплопроводность кипящей уксусной
кислоты, Вт/м2∙К

[3,
561];
ρ2
– плотность кипящей уксусной кислоты,
кг/м3,
[3, 512];
μ2
– коэффициент динамической вязкости
кипящей уксусной кислоты, Па∙с [3, 516];
σ2
– поверхностное натяжение Н/м, ;
ρп
– плотность паров уксусной кислоты,
рассчитывается по формуле

ρп
= ρ∙=∙,

где М – мольная
масса уксусной кислоты, кг/кмоль.

ρп
=
∙=
1,87 кг/м3;

b
=
;

2
= 0,087∙=
1,73∙q2/3.

Сумма термических
сопротивлений стенки и загрязнений

Σrст
=+ rзагр.1
+ rзагр.2,

где
ст
­
– толщина стенки,
м; ст
– коэффициент теплопроводности стали,
Вт/м2∙К
[3, 529];
rзагр.1
и rзагр.2
– термические сопротивления загрязнений
со стороны пара и уксусной кислоты,
м2∙К/Вт
(приложение Б15).

Σrст
=+
+=
3,88∙10-4
м2∙К/Вт.

Коэффициент
теплопередачи равен

К = ==
=.

Удельная
тепловая нагрузка равна

q
= K∙t
=
.

Решаем
уравнение относительно q

.

Это
уравнение решаем графически, задаваясь
значениями q
(5000, 10000, 15000) и определяем величину Y.
На графике (рисунок. 1.2.) строим зависимость
Y(q).
При Y
= 0 находим q
= 10200 Вт/м2.

Коэффициент
теплопередачи

К =
q/∆t
= 10200/17 = 600 Вт/м2К.

Площадь
поверхности теплообмена рассчитываем
по уравнению теплопередачи

F
=
=

=98
м2.

Принимаем аппарат
с площадью поверхности теплопередачи

F
= 112 м2
(приложение Б13). Запас составляет
.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении.
Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Температура материала

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

1.3 Термическое сопротивление (сопротивление теплопередаче)

R,
м2·оС
/Вт,

важнейшее теплотехническое свойство
ограждения. Оно характеризуется разностью
температур внутренней и наружной
поверхности ограждения, через 1 м2
которого проходит 1 ватт тепловой энергии
(1 килокалория в час).

,
(2)

где
δ

толщина ограждения, м;

λ
— коэффициент теплопроводности, Вт/м·оС.

Чем
больше термическое сопротивление
ограждающей конструкции, тем лучше её
теплозащитные свойства. Из формулы (2)
видно, что для увеличения термического
сопротивления R
необходимо либо увеличить толщину
ограждения δ,
либо уменьшить коэффициент теплопроводности
λ,
то есть использовать более эффективные
материалы. Последнее более выгодно из
экономических соображений.

Тепловой расчет

Для понимания влияния температуры окружающей среды и теплового сопротивления материалов, используемых для печатной платы, в лаборатории COTCO Ltd. были исследованы светодиоды DORADO, припаянные на плату Al PCB размером 20*20*2 мм. Температура корпуса измерялась с помощью термозонда, введенного сквозь отверстие диаметром 1 мм в плате под медным основанием корпуса светодиода (Рис. 4).

Через 30 минут после включения питания была проведено измерение температуры корпуса. Данные измерений приведены в таблице 2.

Рис. 4

Таблица 2. Температура корпуса через 30 мин. после включения
Модель DORADO If (мА) Vf (В) PD, Вт. Ta (0C) Tc (0C) Tj (0C) θJc (0C/Вт)
LD-700AWN1-70 350 3.6 1.26 25 77 88 9
LD-700ABL1-E0 300 3.6 1.08 25 70 81 10
LD-700APG1-E0 300 3.6 1.08 25 72 83 10
LD-701CHR1-A5 450 2.4 1.08 24 68 82 13
LD-701CYL1-A5 450 2.4 1.08 24 70 84 13

Наряду с радиатором из Al PCB были исследованы и другие виды печатных плат размером 20*20 мм из фольгированного стеклотекстолита FR4, и из двустороннего стеклотекстолита с просверленными дополнительными сквозными металлизированными отверстиями диаметром 0,4 мм. При пайке DORADO эти отверстия заполняет припой. На этих платах не установлены никакие другие компоненты, излучающие тепло во время работы. Эксперимент проводился при температуре окружающей среды 25 °C и нормальной влажности (Рис. 5).

Рис. 5

Спустя 30 минут после подачи питания радиатор из Al PCB имел более низкую температуру, чем печатная плата из фольгированного стеклотекстолита FR4, так как у него более низкое тепловое сопротивление, что позволяет отдать большее количество тепла в окружающую среду.

Однако печатная плата из двустороннего фольгированного стеклотекстолита за счет наличия дополнительных металлизированных отверстий имеет тепловые характеристики даже лучше, чем у фольгированного алюминия (Табл. 3).

Таблица 3.
Материал платы Измеренная температура θ ba (тепловое сопротивление между платой и окружающей средой)
Стеклотекстолит FR4 84.8 °C 59.8 °C/Вт
Al PCB 76.6 °C 51.6 °C/Вт
Стеклотекстолит FR4 с отверстиями 75.5 °C 50.5 °C/Вт

При увеличении количества отверстий теплопроводность платы из фольгированного стеклотекстолита FR4 еще более увеличивается (Рис. 6, 7).

Рис. 6

Рис. 7

Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)

Теплопередача — это более сложный процесс теплообмена между жидкими и газообразными средами, разделенными твердой стенкой. Теплопередача включает в себя и процесс теплопроводности, и процесс теплоотдачи.

Коэффициент теплоотдачи α, Вт/(м2·К) — это количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и окружающей средой, равной одному градусу.

Коэффициент теплопередачи k, Вт/(м2·К), характеризует тепловой поток, проходящий через единицу площади поверхности стенки при разности температуры сред, равной одному градусу:

Коэффициент теплопередачи для n слойной стенки:

Термические сопротивления теплоотдаче на внешних поверхностях стенки будут равны:

Тогда общее термическое сопротивление теплопередаче будет равно:

Температуры на поверхности стенки можно определить по формулам:

Таблица теплопроводности материалов на М-О

Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093

Теплопередача через плоскую стенку (граничные условия первого рода)

Теплопроводность — первое элементарное тепловое явление переноса теплоты посредством теплового движения микрочастиц в сплошной среде, обусловленное неоднородным распределением температуры.

Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем.

Если температурное поле не изменяется во времени, то мы имеем дело со стационарным тепловым режимом.

Тепловой поток Q — это количество теплоты, передаваемой в единицу времени (1 Дж/с=1 Вт).

Поверхностная плотность теплового потока рассчитывается по формуле:

где Q — тепловой поток ; F — площадь стенки .

На основании закона Фурье q=-λdT/dx, значение плотности теплового потока для однослойной стенки будет определяться по формуле:

где δ = dx — толщина стенки, λ

— коэффициент теплопроводности.

λ/δ; [Вт/м2*К] — коэфициент тепловой проводности стенки.

а обратная величина —

R = δ/λ; [м2.К/Вт] — термическое сопротивление стенки.

Для теплового потока формулу так же можно представить в виде:

Общее количество теплоты проходящее через площадь стены S за время t можно представить как:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector