Содержание:
Какие трубы лучше для магистрали отопления
Мало знать, как рассчитать мощность котла, надо еще правильно выбрать трубы. Сейчас рынок предлагает несколько видов труб для отопления из разных материалов:
-
полиэтилен,
-
полипропилен (с армированием и без),
-
стальные,
-
медные,
-
нержавеющие.
Трубы для отопления в доме можно взять разные, но важно сдать особенности выбранного вида
У каждого из этих видов свои нюансы, которые стоит учитывать при разработке и расчете отопления частного дома:
Стальные трубы в использовании универсальны и выдерживают давление до 25 атмосфер, но обладают существенным недостатком – они ржавеют и имеют определенный срок эксплуатации. Кроме того, имеют сложности при монтаже.
Трубы из полипропилена, композитного металлопластика и сшитого полиэтилена легко монтируются и, благодаря весу, их можно использовать на тонких стенах. Преимущество таких труб в том, что они не подвержены ржавчине, гниению и не реагируют на бактерии. Важный показатель – они не расширяются от тепла и не деформируются на морозе. Выдерживают постоянную температуру до 90 градусов и кратковременное повышение до 110 градусов Цельсия.
Медные трубы отличает высокая цена и повышенная сложность при монтаже, но в прочности они конкурируют с пластиковыми трубами, не подвержены ржавчине и считаются лучшим вариантом. Кроме того, медь пластична, хорошо проводит тепло и держит температуру воды в трубах в пределах от –200 до 250 градусов Цельсия
Эта способность меди защитит систему от возможной разморозки, что очень важно в условиях Сибири и северных районов.
Если дом находится на севере страны, то медные трубы для системы отопления подойдут лучше всего
Источники
- http://msk.ecoterm31.ru/calc/
- http://sovet-ingenera.com/otoplenie/project/raschet-sistemy-otopleniya-chastnogo-doma.html
- https://m-strana.ru/articles/raschet-otopleniya-chastnogo-doma-kalkulyator/
- https://kanalizaciyaseptik.ru/otoplenie/teplovoj-raschet-sistemy-otopleniya.html
- https://www.calc.ru/Raschet-Otopleniya-Doma.html
- https://kalk.pro/heating/building-heating/
Этапы расчета
Рассчитать параметры отопления дома необходимо в несколько этапов:
- расчет теплопотерь дома;
- подбор температурного режима;
- подбор отопительных радиаторов по мощности;
- гидравлический расчет системы;
- выбор котла.
Таблица поможет вам понять, какой мощности радиатор нужен для вашего помещения.
Расчет теплопотерь
Теплотехническая часть расчета выполняется на базе следующих исходных данных:
- удельная теплопроводность всех материалов, используемых при строительстве частного дома;
- геометрические размеры всех элементов здания.
Тепловая нагрузка на отопительную систему в данном случае определяется по формуле: Мк = 1,2 х Тп, где
Тп — суммарные теплопотери постройки;
Мк — мощность котла;
1,2 — коэффициент запаса (20%).
При индивидуальной застройке расчет отопления можно произвести по упрощенной методике: суммарную площадь помещений (включая коридоры и прочие нежилые помещения) умножить на удельную климатическую мощность, и полученное произведение разделить на 10.
Значение удельной климатической мощности зависит от места строительства и равняется:
- для центральных районов России — 1,2 — 1,5 кВт;
- для юга страны — 0,7 — 0,9 кВт;
- для севера — 1,5 — 2,0 кВт.
Упрощенная методика позволяет рассчитать отопление, не прибегая к дорогостоящей помощи проектных организаций.
Температурный режим и подбор радиаторов
Режим определяется исходя из температуры теплоносителя (чаще всего им является вода) на выходе из отопительного котла, воды, возвращенной в котел, а также температуры воздуха внутри помещений.
Оптимальным режимом, согласно европейским нормам, является соотношение 75/65/20.
Для подбора отопительных радиаторов до их монтажа следует предварительно рассчитать объем каждого помещения. Для каждого региона нашей страны установлено необходимое количество тепловой энергии на один кубометр помещения. Например, для европейской части страны этот показатель равен 40 Вт.
Для определения количества тепла для конкретного помещения, надо ее удельную величину умножить на кубатуру и полученный результат увеличить на 20% (умножить на 1,2). На основании полученной цифры рассчитывается необходимое количество отопительных приборов. Производитель указывает их мощность.
К примеру, каждое ребро стандартного алюминиевого радиатора имеет мощность 150 Вт (при температуре теплоносителя 70°С). Чтобы определить нужное количество радиаторов, надо величину необходимой тепловой энергии разделить на мощность одного отопительного элемента.
Гидравлический расчет
Для гидравлического расчета существуют специальные программы.
Одним из затратных этапов строительства является монтаж трубопровода. Гидравлический расчет системы отопления частного дома нужен для определения диаметров труб, объема расширительного бака и правильного подбора циркуляционного насоса. Результатом гидравлического расчета являются следующие параметры:
- Расход теплоносителя в целом;
- Потери напора теплового носителя в системе;
- Потери напора от насоса (котла) до каждого отопительного прибора.
Как определить расход теплоносителя? Для этого необходимо перемножить его удельную теплоемкость (для воды этот показатель равен 4,19 кДж/кг*град.С) и разность температур на выходе и входе, затем суммарную мощность системы отопления разделить на полученный результат.
Диаметр трубы подбирается исходя из следующего условия: скорость воды в трубопроводе не должна превышать 1,5 м/с. В противном случае система будет шуметь. Но есть и ограничение нижнего предела скорости — 0,25 м/с. Монтаж трубопровода требует оценки данных параметров.
Если этим условием пренебречь, то может произойти завоздушивание труб. При правильно подобранных сечениях для функционирования системы отопления бывает достаточно циркуляционного насоса, встроенного в котел.
Потери напора для каждого участка рассчитываются как произведение удельной потери на трение (указывается производителем труб) и длины участка трубопровода. В заводских характеристиках они также указываются для каждого фитинга.
Выбор котла и немного экономики
Котел выбирается в зависимости от степени доступности того или иного вида топлива. Если к дому подведен газ, нет смысла приобретать твердотопливный или электрический. Если нужна организация горячего водоснабжения, то котел выбирают не по мощности отопления: в таких случаях выбирают монтаж двухконтурных устройств мощностью не менее 23 кВт. При меньшей производительности они обеспечат лишь одну точку водоразбора.
Как работать в EXCEL
Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.
Ввод исходных данных
Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.
Ячейка | Величина | Значение, обозначение, единица выражения |
---|---|---|
D4 | 45,000 | Расход воды G в т/час |
D5 | 95,0 | Температура на входе tвх в °C |
D6 | 70,0 | Температура на выходе tвых в °C |
D7 | 100,0 | Внутренний диаметр d, мм |
D8 | 100,000 | Длина, L в м |
D9 | 1,000 | Эквивалентная шероховатость труб ∆ в мм |
D10 | 1,89 | Сумма коэф. местных сопротивлений — Σ(ξ) |
- значение в D9 берётся из справочника;
- значение в D10 характеризует сопротивления в местах сварных швов.
Формулы и алгоритмы
Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.
Ячейка | Алгоритм | Формула | Результат | Значение результата |
---|---|---|---|---|
D12 | !ERROR! D5 does not contain a number or expression | tср=(tвх+tвых)/2 | 82,5 | Средняя температура воды tср в °C |
D13 | !ERROR! D12 does not contain a number or expression | n=0,0178/(1+0,0337*tср+0,000221*tср2) | 0,003368 | Кинематический коэф. вязкости воды — n, cм2/с при tср |
D14 | !ERROR! D12 does not contain a number or expression | ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 | 0,970 | Средняя плотность воды ρ,т/м3 при tср |
D15 | !ERROR! D4 does not contain a number or expression | G’=G*1000/(ρ*60) | 773,024 | Расход воды G’, л/мин |
D16 | !ERROR! D4 does not contain a number or expression | v=4*G:(ρ*π*(d:1000)2*3600) | 1,640 | Скорость воды v, м/с |
D17 | !ERROR! D16 does not contain a number or expression | Re=v*d*10/n | 487001,4 | Число Рейнольдса Re |
D18 | !ERROR! Cell D17 does not exist | λ=64/Re при Re≤2320 λ=0,0000147*Re при 2320≤Re≤4000 λ=0,11*(68/Re+∆/d)0,25 при Re≥4000 |
0,035 | Коэффициент гидравлического трения λ |
D19 | !ERROR! Cell D18 does not exist | R=λ*v2*ρ*100/(2*9,81*d) | 0,004645 | Удельные потери давления на трение R, кг/(см2*м) |
D20 | !ERROR! Cell D19 does not exist | dPтр=R*L | 0,464485 | Потери давления на трение dPтр, кг/см2 |
D21 | !ERROR! Cell D20 does not exist | dPтр=dPтр*9,81*10000 | 45565,9 | и Па соответственно D20 |
D22 | !ERROR! D10 does not contain a number or expression | dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) | 0,025150 | Потери давления в местных сопротивлениях dPмс в кг/см2 |
D23 | !ERROR! Cell D22 does not exist | dPтр=dPмс*9,81*10000 | 2467,2 | и Па соответственно D22 |
D24 | !ERROR! Cell D20 does not exist | dP=dPтр+dPмс | 0,489634 | Расчетные потери давления dP, кг/см2 |
D25 | !ERROR! Cell D24 does not exist | dP=dP*9,81*10000 | 48033,1 | и Па соответственно D24 |
D26 | !ERROR! Cell D25 does not exist | S=dP/G2 | 23,720 | Характеристика сопротивления S, Па/(т/ч)2 |
- значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
- ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».
Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.
Оформление результатов
Авторское цветовое решение несёт функциональную нагрузку:
- Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
- Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
- Жёлтые ячейки — вспомогательные предварительные расчёты.
- Светло-жёлтые ячейки — результаты расчётов.
- Шрифты:
- синий — исходные данные;
- чёрный — промежуточные/неглавные результаты;
- красный — главные и окончательные результаты гидравлического расчёта.
Результаты в таблице Эксель
Пример от Александра Воробьёва
Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.
Исходные данные:
- длина трубы100 метров;
- ø108 мм;
- толщина стенки 4 мм.
Таблица результатов расчёта местных сопротивлений
Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.
Выбор труб для монтажа трубопровода ↑
Среди богатого ассортимента труб, имеющегося на рынке, можно выбрать:
- стальные, нержавеющие, стальные оцинкованные;
- полимерные (армированные алюминием, металлопластиковые, полиэтиленовые, полипропиленовые);
- медные.
Расчет метража труб, необходимых для системы отопления, зависит от выбранной схемы разводки. Существует две схемы: однотрубная и двухтрубная. Большей эффективностью обладает вторая (двухтрубная). Однако при этом увеличивается количество труб для ее монтажа по сравнению с однотрубной разводкой.
Расчет труб и радиаторов отопления невозможно выполнить без учета остального отопительного оборудования
Общие расчеты
Определять общую емкость отопления необходимо, чтобы мощности отопительного котла хватило для качественного обогрева всех помещений. Превышение показателей допустимого объема может привести к повышению износа отопительного прибора, а также значительному расходу электроэнергии.
Необходимое количество теплоносителя рассчитывается согласно следующей формуле: Общий объем = V котла + V радиаторов + V труб + V расширительного бачка
Отопительный котел
Определиться с показателем емкости котла позволяет вычисление мощности нагревательного агрегата. Для этого достаточно взять за основу соотношение, при котором 1 кВт тепловой энергии достаточно для эффективного обогрева 10 м2 жилплощади. Данное соотношение является справедливым при наличии потолков, высота которых составляет не более 3-х метров.
Как только станет известен показатель мощности котла, достаточно отыскать подходящий агрегат в специализированном магазине. Объем оборудования каждый производитель указывает в паспортных данных.
Поэтому в случае выполнения правильного расчета мощности проблем с определением нужного объема не возникнет.
Чтобы определить достаточный объем воды в трубах, необходимо вычислить поперечное сечение трубопровода согласно формуле – S = π × R2, где:
- S – поперечное сечение;
- π – постоянная константа, равная 3,14;
- R – внутренний радиус труб.
Рассчитав значение площади поперечного сечения труб достаточно умножить его на общую длину всего трубопровода в системе отопления.
Расширительный бак
Определить, какой емкостью должен обладать расширительный бак, можно, располагая данными о коэффициенте температурного расширения теплоносителя. У воды этот показатель составляет 0,034 при подогреве до 85 оС.
Выполняя расчет достаточно воспользоваться формулой: V-бака = (V сист × K) / D, где:
- V-бака – необходимый объем расширительного бачка;
- V-сист – общий объем жидкости в остальных элементах системы отопления;
- K – коэффициент расширения;
- D – эффективность расширительного бачка (указывается в технической документации).
В настоящее время существует широкое разнообразие отдельных типов радиаторов для отопительных систем. Помимо функциональных различий все они имеют разную высоту.
Чтобы рассчитать объем рабочей жидкости в радиаторах, необходимо для начала подсчитать их количество. После чего умножить данную сумму на объем одной секции.
Узнать объем одного радиатора можно, воспользовавшись данными из технического паспорта изделия. При отсутствии такой информации можно сориентироваться согласно усредненным параметрам:
- чугунные – 1,5 л на секцию;
- биметаллические – 0,2-0,3 л на секцию;
- алюминиевые – 0,4 л на секцию.
Понять, как правильно рассчитать значение позволит следующий пример. Допустим, имеется 5 радиаторов, изготовленных из алюминия. Каждый обогревательный элемент содержит по 6 секций. Производим расчет: 5×6×0,4 = 12 л.
Как видно, расчет емкости отопления сводится к вычислению суммарного значения четырех вышеуказанных элементов.
Определить необходимую емкость рабочей жидкости в системе с математической точностью удается не каждому. Поэтому, не желая выполнять расчет, некоторые пользователи действуют следующим образом. Для начала заполняют систему примерно на 90%, после чего проверяют работоспособность. Далее стравливают скопившийся воздух и продолжают заполнение.
В процессе эксплуатации отопительной системы происходит естественный спад уровня теплоносителя в результате конвекционных процессов. При этом происходит потеря мощности и производительности котла. Отсюда вытекает необходимость наличия резервной емкости с рабочей жидкостью, откуда можно будет отслеживать убыток теплоносителя и при необходимости производить его пополнение.
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
оптимальная | допустимая | оптимальная | допустимая, max | оптимальная, max | допустимая, max | |
Для холодного времени года | ||||||
Жилая комната | 20÷22 | 18÷24 (20÷24) | 45÷30 | 60 | 0.15 | 0.2 |
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже | 21÷23 | 20÷24 (22÷24) | 45÷30 | 60 | 0.15 | 0.2 |
Кухня | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Туалет | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Ванная, совмещенный санузел | 24÷26 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Помещения для отдыха и учебных занятий | 20÷22 | 18÷24 | 45÷30 | 60 | 0.15 | 0.2 |
Межквартирный коридор | 18÷20 | 16÷22 | 45÷30 | 60 | Н/Н | Н/Н |
Вестибюль, лестничная клетка | 16÷18 | 14÷20 | Н/Н | Н/Н | Н/Н | Н/Н |
Кладовые | 16÷18 | 12÷22 | Н/Н | Н/Н | Н/Н | Н/Н |
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется) | ||||||
Жилая комната | 22÷25 | 20÷28 | 60÷30 | 65 | 0.2 | 0.3 |
Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями | от 5 до 10% |
«Мостики холода» через плохо изолированные стыки строительных конструкций | от 5 до 10% |
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) | до 5% |
Внешние стены, в зависимости от степени утепленности | от 20 до 30% |
Некачественные окна и внешние двери | порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания |
Крыша | до 20% |
Вентиляция и дымоход | до 25 ÷30% |
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q = S × 100
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
Q = S × h × 41 (или 34)
h – высота потолков (м);
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Инструменты в Главном меню программы Valtec
У Valtec, как и у любой другой программы, вверху расположено главное меню.
Кликаем на кнопку «Файл» и в открывшемся подменю видим стандартные инструменты, известные любому пользователю компьютера по другим программам:
Запускается программа «Калькулятор», встроенная в Windows – для выполнения расчётов:
С помощью «Конвертера» мы будем переводить одни единицы измерения в другие:
Здесь три столбца:
В крайнем левом выбираем ту физическую величину, с которой работаем, например, давление. В среднем столбце — единицу, из которой нужно перевести (например, Паскали – Па), а в правом – в которую нужно перевести (например, в атмосферы технические). В левом верхнем углу калькулятора есть две строки, в верхнюю будем вбивать полученное при расчетах значение, а в нижней будет сразу отображаться перевод в требуемые единицы измерения… Но обо всём этом поговорим в своё время, когда дойдёт до практики.
А пока продолжаем знакомиться с меню «Инструменты». «Генератор бланков»:
Это нужно для проектировщиков, выполняющих проекты на заказ. Если мы делаем отопление только в своём доме, то «Генератор бланков» нам без надобности.
Следующая кнопка в главном меню программы Valtec – «Стили»:
Она для управления внешним видом окна программы – подстраивает под то программное обеспечение, которое установлено на вашем компьютере. По мне так ненужный прибамбас, т. к. я из тех, для кого главное не «шашечки», а доехать. А вы для себя решайте сами.
Рассмотрим более подробно инструменты, находящиеся под этой кнопкой.
В «Климатологии» выбираем район строительства:
Потери тепла в доме зависят не только от материалов стен и прочих конструкций, а и от климата местности, где здание находится. Следовательно, и требования к системе отопления зависят от климата.
В левой колонке находим район, в котором живём (республику, область, край, город). Если нашего населённого пункта здесь нет, то выбираем ближайший.
«Материалы». Здесь перечислены параметры разных строительных материалов, применяемых в конструкциях домов. Именно поэтому при сборе исходных данных (см. предыдущие материалы по проектированию) мы перечисляли материалы стен, полов, потолков:
Инструмент «Проёмы». Здесь сведения по дверным и оконным проёмам:
«Трубы». Здесь собраны сведения о параметрах труб, применяемых в системах отопления: размеры внутренние, наружные, коэффициенты сопротивления, шероховатость внутренних поверхностей:
Это нам понадобится при гидравлических расчётах – для определения мощности циркуляционного насоса .
«Теплоносители». Собственно, здесь ничего кроме характеристик тех теплоносителей, которые могут быть залиты в систему отопления дома:
Эти характеристики — теплоёмкость, плотность, вязкость.
Не всегда в качестве теплоносителя используют воду, бывает, что в систему заливают антифризы, называемые в простонародии «незамерзайками». О выборе теплоносителя поговорим в отдельной статье.
«Потребители» для расчета системы отопления не нужны, т. к. этот инструмент для расчётов систем водоснабжения:
«КМС» (коэффициенты местного сопротивления):
Любой отопительный прибор (радиатор, вентиль, термостат и пр.) создаёт сопротивление для движения теплоносителя, и эти сопротивления нужно учесть, чтобы правильно подобрать мощность циркуляционного насоса.
«Приборы по DIN». Это, как и «Потребители», больше касается систем водоснабжения:
Преимущества и недостатки воздушного отопления
Бесспорно, воздушное отопление дома имеет ряд неоспоримых достоинств. Так, установщики подобных систем утверждают, что коэффициент полезного действия достигает 93%.
Также, благодаря малой инерционности системы, можно в максимально короткие сроки прогреть помещение.
Кроме того, подобная система позволяет самостоятельно интегрировать отопительное и климатическое устройство, что позволяет поддерживать оптимальную температуру помещения. Помимо этого, в процессе передачи тепла по системе промежуточные звенья отсутствуют.
Схема воздушного отопления. Нажмите для увеличения.
Действительно, ряд позитивных моментов очень привлекателен, за счет чего система воздушного отопления на сегодняшний день пользуется огромной популярностью.
Недостатки
Но среди такого ряда достоинств нужно выделить и некоторые минусы воздушного отопления.
Так, системы воздушного отопления загородного дома можно устанавливать только в процессе строительства непосредственно самого дома, то бишь, если вы сразу не позаботились об отопительной системе, то по завершению строительных работ вам это сделать не удастся.
Следует отметить, что устройство воздушного отопления нуждается в регулярном сервисном обслуживании, так как рано или поздно могут возникать некоторые неполадки, которые способны привести к полной поломке оборудования.
Недостатком такой системы является и то, что вы не сможете ее модернизировать.
Если вы, все-таки, решили установить именно эту систему, вам следует позаботиться о дополнительном источнике электроснабжения, так как устройство для воздушной системы отопления имеет немалую потребность в электричестве.
При всех, как говорится, «за» и «против» системы воздушного отопления частного дома, она широко используется во всей Европе, в особенности в тех странах, где климат более холодный.
Также исследования показывают, что около восьмидесяти процентов дач, коттеджей и загородных домов используют именно систему воздушного отопления, так как это позволяет одновременно обогревать комнаты непосредственно всего помещения.
Специалисты настоятельно не рекомендуют в этом деле принимать поспешных решений, которые впоследствии могут повлечь за собой ряд негативных моментов.
Для того чтобы оборудовать отопительную систему своими руками, вам потребуется иметь определенный багаж знаний, а также обладать навыками и умениями.
Помимо этого, следует запастись терпение, ведь этот процесс, как показывает практика, занимает немало времени. Безусловно, специалисты с этой задачей справятся куда более быстрее непрофессионального застройщика, но ведь за это придется заплатить.
Поэтому многие, все же, отдают предпочтение позаботиться об отопительной системе самостоятельно, хотя, все-таки, в процессе работы вам все равно может потребоваться помощь.
Запомните, правильно установленная отопительная система – это залог уютного жилища, теплота которого будет согревать вас даже в самые жуткие морозы.
Как производится сбор данных
Гидравлический расчёт системы в большинстве своём основывается на вычислениях связанных с расчетом отопления по площади помещения.
Поэтому необходимо иметь следующую информацию:
- площадь каждого отдельного помещения;
- габариты оконных и дверных разъёмов (внутренние двери на потери теплоты практически не влияют);
- климатические условия, особенности региона.
Будем исходить из следующих данных. Площадь общей комнаты – 18,83 м2, спальня – 14,86 м2, кухня – 10,46 м2, балкон – 7,83 м2 (сумма), коридор – 9,72 м2 (сумма), ванная – 3,60 м2, туалет – 1,5 м2. Входные двери – 2,20 м2, оконная витрина общей комнаты – 8,1 м2, окно спальни – 1,96 м2, окно кухни – 1,96 м2.
Высота стен квартиры – 2 метра 70 см. Внешние стены изготовлены с бетона класса В7 плюс внутренняя штукатурка, толщиной 300 мм. Внутренние стены и перегородки – несущие 120 мм, обычные – 80 мм. Пол и соответственно потолок из бетонных плит перекрытия класса В15, толщина 200 мм.
Планировка данной квартиры предоставляет возможность создать одну единственную ветку отопления, проходящую через кухню, спальню и общую комнату, что обеспечит среднюю температуру 20-22⁰C в помещениях (+)
Что касаемо окружающей среды? Квартира находится в доме, который расположен в средине микрорайона небольшого города. Город расположен в некой низменности, высота над уровнем моря 130-150 м. Климат умеренно континентальный с прохладной зимой и достаточно тёплым летом.
Средняя годовая температура, +7,6°C. Средняя температура января -6,6°C, июля +18,7°C. Ветер — 3,5 м/с, влажность воздуха средняя — 74 %, количество осадков 569 мм.
Анализируя климатические условия региона, нужно отметить, что имеем дело с большим разбросом температур, что в свою очередь влияет на особое требование к регулировке системы отопления квартиры.