Как правильно прозвонить транзистор?

Полевой транзистор — что это

Он включает три основных элемента — исток, затвор и сток. Для их создания используются полупроводники n-типа и p-типа. Они могут сочетаться одним из способов:

  1. Сток, исток соответствуют n-типу, а затвор — p-типу. Их называют транзисторы n-p-n типа.
  2. Такие, у которых используется полярность p-n-p. Тип проводимости у каждой части транзистора изменён на противоположный в сравнении с предыдущим вариантом.


Проверка мультиметром Если эту деталь соединить с источником питания, то ток будет отсутствовать. Но всё будет иначе, если это сделать между истоком и затвором или стоком и затвором. Нужно, чтобы к затвору было приложено напряжение, соответствующее по знаку его типу проводимости (положительное для p-типа, отрицательное для n-типа). Тогда через эту деталь потечёт ток. Чем более высокое напряжение было подано на затвор, тем он будет сильнее.


Отличие полевого от биполярного транзистора

Транзистор станет открытым при условии, что на затвор подаётся разность потенциалов нужной полярности. В этом случае при помощи электрического поля создаётся канал между истоком и стоком, через который могут перемещаться электрические заряды. У других разновидностей транзисторов управление происходит на основе тока, а не напряжения.

Рассматриваемые электронные компоненты также называют мосфетами. Это слово происходит из аббревиатуры MOSFET — Metal Oxide Semiconductor Field Effect Transistor (в переводе это означает: металл-окисел-полупроводник полевой транзистор).


Разновидности полевиков

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая.

Цифровой мультиметр

В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

Важно! После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.

Вам это будет интересно Особенности резонанса токов

С управляющим p-n-переходом

  1. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  2. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах.

Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Подготовка к работе

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Транзистор с управляющим переходом

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Устройство транзистора

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Транзистор открыт

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.

Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.

Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Назначение выводов

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.

Вам это будет интересно Схема блока АВР

Проверка диода в прямом направлении

На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.

Проверка диода в обратном направлении

  1. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Открытие канала

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.

Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.

Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Работа полевого МДП транзистора

Способы измерения

Для измерения параметров полевых транзисторов применяются специализированные приборы. В основе их работы лежит использование микроконтроллера и встроенного генератора. Сигнал определённого вида подаётся на контакты транзистора, в результате чего изменяется. С помощью встроенного анализатора устройство оценивает эти изменения и преобразует данные в удобную для восприятия информацию. Вся суть пользования таким измерителем сводится к установлению мосфета в специальные контактные площадки и нажатии кнопки запуск.

В быту же радиолюбителями часто применяются самодельные устройства. Так, простейшего вида приспособление из нескольких элементов позволяет измерить сопротивление каналов. Для этого используется: вольтметр, автомобильная лампочка, источник напряжения и резистор номиналом около 100 Ом. Собрав такую схему, можно без труда измерить Rds радиоэлемента, тем самым проверить мосфет на работоспособность.

Но проще всего и быстрее для диагностики радиоэлемента использовать мультиметр. С его помощью несложно проверить мосфет на способность работы в ключевом режиме. И если по результатам проверки он нормально открывается и закрывается, то вероятность его исправности очень велика.

Транзистор с управляющим электродом

Для лучшего понимания процесса проверки мосфета его можно представить в виде эквивалентной схемы как треугольник. Две стороны такого треугольника представляют собой два диода, а третья — резистор. При этом точка соединения диодов считается затвором, а соединение их с резистором — стоком и истоком.

Представив эквивалентную схему, можно приступить к проверке элемента. Для примера удобно рассмотреть один из типов проводимости, например, n-тип:

  1. Измерение сопротивление канала. Для этого с помощью переключателя выбора измерений мультиметр устанавливается в режим проверки сопротивления. Предел измерения выбирается около двух мегом. Щупами прибора касаются стока и истока транзистора. В результате на экране мультиметра появится число равное сопротивлению перехода. После меняется полярность щупов, и снова измеряется сопротивление. При исправном мосфете эти значения должны быть примерно одинаковыми. Такое подключение на эквивалентной схеме соответствует положению, когда измерялась бы величина сопротивления резистора.
  2. Проверка перехода затвор-исток. Для этого мультиметр переключается в режим прозвонки диодов. Измерительным проводом, подключённым к плюсу тестера, прикасаются к затвору, а минусовым — к истоку. Итогом такого действия будет измерение мультиметром падения напряжения на открытом переходе. Его значение должно составлять примерно 600–700 милливольт. На следующем этапе изменяется полярность приложенных проводов. Если мосфет исправен, тестер покажет бесконечность. Это будет обозначать, что переход закрыт.
  3. Исследование перехода сток-затвор. Мультиметр оставляется в режиме прозвонки диодов. Но положительным щупом прикасаются к затвору, а отрицательным к стоку. В этом случае тестер должен показать падение напряжения на переходе порядка 600–700 милливольт. При смене полярности в случае работоспособности транзистора тестер покажет бесконечность.

Мосфет с изолированным затвором

Такой вида транзистора имеет в своём корпусе встроенный диод, располагающийся между истоком и стоком, поэтому первоначально на исправность проверяется именно он. Для его проверки мультиметр переключается в режим проверки диодов, а его щупы подключаются к стоку и истоку. В прямом направлении прибор должен показать падение напряжения, а в случае смены полярности — бесконечность.

Основная проверка транзистора заключается в имитации его работы в режиме ключа. В случае радиоэлемента n-типа его диагностика осуществляется следующим образом:

  1. Мультиметр переключается на проверку диодов.
  2. Щупом, подключённым к минусу, дотрагиваются до истока, а к плюсу — до затвора.
  3. Плюсовой провод переносится к стоку. Если мосфет рабочий, то сопротивление перехода будет очень низким, то есть канал станет открытым.
  4. Далее, положительный щуп подключается к истоку, а отрицательный — к затвору. После этих действий транзистор закроется.

По результатам измерения делается вывод о работоспособности элемента. Таким образом, соблюдая последовательность приведённых действий, можно проверить мосфет любого типа на работоспособность с помощью мультиметра.

Что такое транзистор

Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.

Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.

Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.

Разновидности по принципу действия:

  • биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
  • полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.

У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов

Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Проверка тиристоров

Рассмотрим также как прозванивать тиристоры, они во многом напоминают рассматриваемые детали. Тут есть 3 p-n сегмента, а режим после сигнала управления не меняется — в этом и заключается разница. Структуры идут поочередно как полосы на зебре. Thyristor открыт, пока значение протекающей величины не спадет «до тока удержания». Такие детали позволяют создавать экономные схемы.

Мультиметр ставят на отметку 2000 Ом. Чтобы открыть проверяемый thyristor, черную жилу — к катоду, красную — к аноду. Деталь открывается как зарядом «+», так и «−». В двух случаях сопр. должно быть меньше «1». Деталь открытая, если величина управляющего импульса превысит рамку удержания, если меньше — ключ закрывается.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.


Все про терморезисторы, назначение, виды, устройство, принцип действия

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета – с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный – к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Виды транзисторов

  1. с n-проводимостью (электронной);
  2. с p-проводимостью (дырочной).

Простейшим представителем полупроводниковых элементов является диод, содержащий один p-n переход.

Транзисторы устроены сложнее. Существует две их разновидности: биполярные и полевые.

Биполярные

Также делятся на две подгруппы:

  1. с n-p-n переходом;
  2. с p-n-p переходом.

Составляющие биполярного транзистора называются эмиттером, коллектором и базой. Если представить данный элемент в виде двух соединенных диодов, то базой будет их точка сопряжения.

Для проверки биполярного прибора требуется распознать его тип (n-p-n или p-n-p) и – определить назначение выводов (база, эмиттер и коллектор).

Полевые

Также делятся на два вида:

  1. n-канальные;
  2. p-канальные.

В полевом транзисторе сопротивление токопроводящего участка регулируется электрическим полем.

Составляющие элемента называются истоком, стоком и затвором. Ток движется из истока в сток, регулировка осуществляется затвором.

Конструкция современных полевых транзисторов дополнена диодом, установленным между истоком и стоком.

Устройство и принцип действия полевых транзисторов

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод – затвор выполняет функцию регулировки поперечного сечения канала.

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.

Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка – полупроводниковая пластина, имеющая относительно высокое удельное сопротивление. В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод – исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector