Содержание:
- Единицы измерения
- Как можно измерить силу тока
- 2Измерение силы тока специальным прибором
- Модель электрической цепи
- Основные принципы замера силы тока
- Зачем нужно рассчитывать ток
- Как определить силу тока. Как узнать, вычислить какой ток в схеме, цепи.
- Несколько примеров
- Виды тока и единицы измерения
- Вариант 1
- Задачи с решением
- Зависимость силы тока от напряжения и сопротивления
- Как рассчитать мощность резистора?
Единицы измерения
В Системе международных единиц силу тока принято измерять в амперах (А). Так решила международная конференция электриков в 1881 г.
Ампер Андре-Мари — французский ученый, работавший в сфере физики и математики и приложивший немало труда в исследовании электричества. Его заслуги в данной области столь высоки, что многие представители ученого мира считают Ампера, достойным звания основателя электродинамики.
Ток в 1 А — достаточно сильный, потому зачастую применяют единицы миллиампер (мА, 0,001 А) и микроампер (мкА, 10^-6 А).
В системе единиц:
- СГСМ (электромагнитной), гораздо менее распространенной, силу тока измеряют в абамперах или био. Соотношение единиц следующее: 1 ампер = 0,1 абампер;
- СГСЭ (электростатической) применяют единицу статампер. Соотношение: 1 ампер = 2997924536,843 статампер.
Единицы абампер и статампер широко применяются в теоретической физике.
Как можно измерить силу тока
Для измерения силы тока используется прибор, называемый амперметром. На электрических схемах он обозначается буквой А, заключенной в окружность.
В любом проводнике замкнутой цепи, собранной последовательно, протекает электрический ток одинаковой величины. Поэтому для его измерения достаточно просто разомкнуть эту цепь в любом месте и подключить амперметр. Нельзя подключать его к источнику тока при отсутствии устройства потребления.
Ток бывает переменный и постоянный. И для его измерения необходимы разные устройства. На шкале амперметров для постоянного тока имеется одно из следующих обозначений — «-», «DC» или указание на полярность подключения. Амперметры, предназначенные для измерения силы переменного тока обозначаются «\(\sim\)» или «АС».
Амперметр для постоянного тока необходимо включать в цепь с соблюдением полярности, то есть к клемме прибора, имеющей обозначение «+», присоединяют провод, идущий от положительного электрода.
Примечание
Если на источнике тока отсутствует указание полярности, то узнать ее можно по электрической схеме. Короткая линия всегда соответствует «минусу», а длинная — «плюсу».
Амперметр для переменного тока не имеет полярности и подключается без ее учета.
Описание прибора
Амперметр — это один из электроизмерительных приборов. Он обладает очень низким сопротивлением, чтобы не оказывать влияния на величину измеряемой силы тока. Ведь закон Ома гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Это означает, что чем больше сопротивление проводников, тем меньше сила тока.
Шкала прибора может быть градуирована не только в А, но и в других кратных единицах — мкА, мА, кА.
Амперметры бывают:
- аналоговые (стрелочные);
- цифровые (электронные).
Измерители стрелочного типа не нуждаются в источнике питания, так как потребляют электрический ток непосредственно из измеряемой цепи. Но они показывают величину силы тока с некоторой задержкой, а не мгновенно.
Электронные амперметры практически полностью лишены такого недостатка как инерционность. Современные процессоры, используемые в этих моделях, обеспечивают частоту обновления показателей до 1000 в минуту. Их недостатком является высокая цена и необходимость отдельного источника питания для функционирования.
2Измерение силы тока специальным прибором
Сила тока измеряется таким прибором, как Амперметр, на их табло гордо красуется большая буква “А”
Важно понимать, что ток может быть переменным, обозначается волнистой линией “~” и постоянным, обозначается прямой линией “-”. Род тока, который измеряет прибор, также указан у него на табло
Бытовая электрическая сеть 220 В – сеть переменного тока. Все, что питается от батареек, как правило, постоянный ток.
Самые простые Амперметры, которые вы возможно найдете на барахолках или у дедушки в гараже, мало того, что аналоговые со стрелками, так еще и, зачастую, могут измерить только определенный род тока.
Правильное подключение Амперметра – последовательно с измеряемой нагрузкой и никак по другому, иначе мы провоцируем Короткое Замыкание (К.З.)
Для постоянного тока также может быть важной полярность включения (плюс-минус)
Впрочем, использовать сегодня Амперметр – нечто сродни архаизму, ведь есть такие замечательные приборы, как Мультиметры. Приставка “мульти” говорит сама за себя – многометр, если говорить простым языком. Он может мерить буквально все, когда дело касается электрических величин, просто переключите его на силу тока и “вуаля”.
Ошибись вы с подключением – можно спровоцировать К.З., которое может красиво вспыхнуть и сжечь прибор или выбить пробки в квартире. И хорошо, если отделаетесь легким испугом, а ведь вполне можно получить и ожог. Никогда не забывайте, что электрический ток опасен.
Модель электрической цепи
Лучше понять физический смысл рассматриваемой величины можно на примере механической модели электрической цепи. В качестве ее возьмем водопроводную сеть частного дома.
Для того, чтобы вода начала поступать в водопровод из скважины или колодца необходим насос. Поэтому его можно рассматривать в качестве аналога батареи или иного источника тока. Он создает в системе давление, которое и приводит воду в движение. Соответственно трубы выступают роли проводников, молекулы воды — электронов, а краны — электрических переключателей.
Чем сильнее напор в водопроводной системе, тем большее количество воды, а вернее ее молекул, протекает через поперечное сечение трубы за каждую секунду. Отсюда можно сделать вывод, что чем больше сила тока, тем сильнее и его действие.
Примечание
Воздействие тока силой до 0,5 мА (частота 50 Гц) человек не ощущает. При силе от 2 до 10 мА возникают болезненные сокращения мышц. А удар током силой свыше 100 мА грозит развитием фибрилляции желудочков и остановкой сердечной деятельности.
Основные принципы замера силы тока
Главной особенностью работы с мультитестером в режиме амперметра является то, что он обязательно должен быть включен в разрыв цепи. Такое подключение называется последовательным. По сути, прибор становится частью этой цепи, то есть весь ток должен пройти именно через него. А как известно, сила тока на любом участке неразветвленной электрической цепи постоянна. Проще говоря, сколько «вошло» столько должной и «выйти». То есть место последовательного подключения амперметра особого значения не имеет.
Чтобы стало понятнее, ниже размещена схема, в которой показывается разница в подключении мультиметра в разных режимах работы.
Различия в принципах подключения мультитестера в разных режимах измерений
- Итак, при замере силы тока мультиметр включается в разрыв цепи, сам становясь одним из ее звеньев. То есть будет проблема, как этот разрыв цепи организовать практически. Решают по-разному – это будет показано ниже.
- При замере напряжения (в режиме вольтметра) цепь, наоборот, не разрывается, а прибор подключается параллельно нагрузке (участку цепи, где требуется узнать напряжение). При замере напряжения источника питания щупы подключаются напрямую к клеммам (контактам розетки), то есть мультиметр сам становится нагрузкой.
- Наконец, если меряется сопротивление, то внешний источник питания вообще не фигурирует. Контакты прибора подключаются непосредственно к той или иной нагрузке (прозваниваемому участку цепи). Необходимый ток для проведения измерений поступает из автономного источника питания мультитестера.
Вернемся к теме статьи — к замерам силы тока.
Очень важно изначально правильно установить на мультиметре, помимо постоянного или переменного тока, диапазон измерений. Надо сказать, что у начинающих с этим часто возникают проблемы
Сила тока – величина крайне обманчивая. И «спалить» свой прибор, а то и наделать больших бед, неправильно установив верхний предел измерений – проще простого.
Начинать измерения силы тока, особенно если нет представления о возможной его величине в цепи, следует с максимального диапазона мультитестера. При необходимости можно, переставив провод и последовательно снижая верхний предел, выйти на оптимальный.
Поэтому настоятельная рекомендация – если вы не знаете, какая сила тока ожидается в цепи, начинайте измерения всегда с максимальных величин. То есть, например, на том же DT 830 красный щуп должен быть установлен в гнездо на 10 ампер (показано на иллюстрации красной стрелкой). И рукоятка переключатель режимов работы также должно показывать на 10 ампер (голубая стрелка). Если измерения покажут, что предел завышен (показания получаются менее 0,2 А), то можно, чтобы получить более точные значения, переставить сначала красный провод в среднее гнездо, а затем ручку переключателя – в положение 200 мА. Бывает, что и этого многовато, и приходится переключателем снижать еще на разряд и т.д. Не вполне удобно, не спорим, но зато безопасно и для пользователя, и для прибора.
Кстати, о безопасности
Никогда не следует пренебрегать мерами предосторожности. И особенно если речь идет об опасных напряжениях (а сетевое напряжение 220 В – чрезвычайно опасно) и высоких токах
Мы здесь спокойно ведём разговор об амперах, а между тем, безопасным для человека считается ток не выше 0.001 ампера. А ток всего в 0.01 ампера, прошедший через тело человека, чаще всего приводит к необратимыми последствиям.
Проведение замеров силы тока, особенно если работа ведется в самом высоком диапазоне, рекомендуется проводить максимально быстро. В противном случае мультитестер может просто перегореть.
Об этом, кстати, могут информировать и предупреждающие надписи около гнезда подключения измерительного провода.
Пример предупреждающей надписи у гнезда подключения провода для замеров на максимально допустимом диапазоне токов
Обратите внимание. Слово «unfused» в данном случае обозначает, что прибор в этом режиме не защищен плавким предохранителем
То есть при перегреве он просто выйдет полностью из строя. Указано и допустимое время замера – не более 10 секунд, да и то не чаще одного раза в 15 минут («each 15 m»). То есть после каждого такого замера придется еще и выдерживать немалую паузу.
Справедливости ради – далеко не все мультиметры настолько «привередливые». Но если такое предупреждение есть – пренебрегать им не стоит. И в любом случае замер силы тока проводить максимально быстро.
Зачем нужно рассчитывать ток
На большинстве электроприборов указывается мощность потребления. Это необходимо для того, чтобы правильно вести учет потребления электроэнергии. Но для всего остального значение мощности несет мало информации. Параметры автоматов защиты и плавких вставок, сечение электропроводки, требуют знать протекающий ток или, как говорят электрики, ампераж нагрузки.
Простой пример: какой паяльник сильнее перегружает электропроводку, 42-х вольтовый на 80 Вт или 220-и вольтовый на 100 Вт? Логичный ответ, что более мощный, является неправильным. Ведь на самом деле, при включении второго паяльника в сети протекает ток около 0.5 А, а при включении первого — почти 2 А. Соответственно, для таких устройств требуется различная электропроводка и номинал защитных устройств. При одинаковой толщине проводов питания нагрев будет сильнее, при работе с низковольтным инструментом.
По этой же причине в линиях электропередач стремятся по максимуму повысить передаваемое напряжение. Поскольку мощность нагрузки остается одинаковой, при более высоком напряжении по проводам протекает меньший ток и поэтому:
- Снижаются потери;
- Уменьшается нагрев;
- Снижается сечение проводов и, как следствие, их масса и нагрузка на опоры линий электропередач.
Высоковольтная опора ЛЭП
Как определить силу тока. Как узнать, вычислить какой ток в схеме, цепи.
Тема: по какой формуле можно найти силу тока, как правильно измерить ток.
Известно, что электрический ток заряженных частиц лежит в основе работы всей электротехники. Знание его величины дает понимание о режиме работы той или иной цепи, схемы. Если для специалиста электрика, электронщика не составит особого труда определить силу тока, то для новичка это может оказаться проблемой. В этой теме давайте с вами рассмотрим, какими именно способами можно узнать, вычислить, найти электрический ток используя как непосредственные измерения так и формулы. Основными электрическими величинами являются напряжение, ток, сопротивление, мощность. Пожалуй главной формулой электрика является формула закона Ома. Она имеет вид I=U/R (ток равен напряжение деленное на сопротивление). Данную формулу приходится использовать повсеместно. Из нее можно вывести две другие: R=U/I и U=I*R. Зная любые две величины всегда можно вычислить третью. Напомню, что при использовании формул нужно пользоваться основными единицами измерения. Для тока это амперы, для напряжения это вольты и для сопротивления это омы.
К примеру, вам нужно быстро определить силу тока, которую потребляем электрочайник. Напряжение нам известно, это 220 вольт. Берем в руки мультиметр, электронный тестер, меряем сопротивление в омах. Далее мы просто напряжение перемножаем на это сопротивление. В итоге мы получаем искомую силу тока в амперах. Хочу уточнить, что данная форума работает только для цепей с активной нагрузкой (обычные нагреватели, лампы накаливания, светодиоды и т.д.). Для реактивной нагрузки формула имеет иной вид, где уже используется такие величины как индуктивность, емкость, частота.
Силу тока можно определить и по другой формуле, которая в себе содержит напряжение и мощность. Она имеет вид: I=P/U (сила тока равна электрическая мощность деленная на напряжение). То есть, 1 ампер равен 1 ватт деленный на 1 вольт. Две других формулы, выходящие из этой, имеют такой вид: P=U*I и U=P/I. Если вам известны любые две величины из тока, напряжения и мощности, всегда можно вычислить третью.
Помимо формул силу тока можно определить и практическим путем, через обычное измерение тестером, мультиметром. Для новичков сообщаю, что силу тока нужно измерять в разрыв электрической цепи. То есть, к примеру, у нас схема, прибор, с него выходит кабель с двумя проводами питания. Берем измеритель, выставляем на нем нужный диапазон измерения. Далее, один щуп измерителя мы прикладываем к одному из проводов питания устройства, а другой щуп измерителя к одному из контактов самого электропитания. Ну, и оставшийся провод, идущий от устройства мы также подсоединяем ко второму контакту питания. После включения самого устройства на измерителе появится величина тока, которую он потребляет при своей работе.
При измерении силы тока нужно помнить, что имеет значение какой вид тока течет по цепи (переменный или постоянный). Допустим, на большинство электротехники подается переменное напряжение, следовательно и измерять на входе ток нужно переменного типа. Внутри устройств обычно стоят блоки питания, которые снижают сетевое напряжение до меньших величин и делают его постоянным. Значит ту часть электрической цепи, что стоит после выпрямляющего диодного моста (делающая из переменного тока постоянный) уже нужно измерять как постоянный ток. Если вы попытаетесь измерить силу тока не своего типа, то и показания вы получите неверные.
Напряжение измеряют по другому. Измерительные щупы уже прикладываются не в разрыв цепи, как это делается у тока, а параллельно контактам питания. И в этом случае тип напряжения имеет значение (переменное или постоянное). Так что будьте внимательны, когда выставляете тип тока (напряжения) и их предел на тестере.
P.S. Именно сила тока в электротехнике делает всю работу, что мы воспринимаем как свет, тепло, звук, движение и т.д. Для облегчения понимания, что такое ток, а что такое напряжение можно привести аналогию с обычной водой. Так вот давление в воды в водопроводе будет соответствовать примерно электрическому напряжению, а движение самой воды это будет ток.
Несколько примеров
В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.
1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.
Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.
R1+R2=1+2=3 Ома
Тогда рассчитать силу тока можно по закону Ома:
I=U/R=12/3=4 Ампера
При параллельном соединении двух элементов Rобщее можно рассчитать так:
Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67
Тогда дальнейшие вычисления можно проводить так:
I=12*0,67=18А
2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.
В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.
Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома
Теперь схема примет вид:
Далее находим ток по тому же закону Ома:
I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер
Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!
Наверняка вы не знаете:
- Как рассчитать сечение кабеля
- Как перевести амперы в киловатты
- Как найти провод в стене
Виды тока и единицы измерения
Ток бывает двух видов:
- Постоянный — это тот, что не меняется со временем.
- Переменный — это тот, что находится в розетке.
Обычные батарейки или аккумуляторы телефонов выдают именно постоянный. А переменный может изменяться. Когда вы включаете в одну розетку настольную лампу, которой не требуется большая сила, и вместе с ней включаете, например, мощный пылесос, то работают оба прибора, так как ток в сети переменный, в отличие от напряжения, он «подстроился» под приборы. Если бы он был постоянным, то в зависимости от его величины у вас либо сгорит лампа, либо не заработает пылесос.
Измеряется в амперах (А) — эта единица измерения одна из основных в СИ, обозначается величина английской буквой I.
Сила может измеряться основными и вспомогательными единицами:
- Ампер (А).
- миллиампер (мА) — это одна тысячная ампера.
- микроампер (мкА) — одна миллионная ампера.
Если в замкнутой простой цепи проходит постоянный тoк, то в каждом месте цепи за секунду или минуту проходит абсолютно равное его количество, так как он не может накапливаться в отдельных участках цепи. Если рассматривать сложные цепи, то это правило тоже работает, но уже для отдельных участков цепи, которые можно считать простыми.
Количество его измеряется в кулонах. Если через поперечное сечение проводника за одну секунду проходит точно один кулон — то это один ампер. Для нахождения её можно использовать специальные приборы либо формулы.
Вариант 1
A1. В основу определения единицы силы тока положено явление
1) взаимодействия электрических зарядов
2) взаимодействия электрических токов
3) электризации тел
4) теплового действия тока
А2. За 2 мин по участку цепи проходит электрический заряд в количестве 12 Кл. Сила тока на этом участке цепи равна
1) 0,1 А
2) 6 А
3) 24 А
4) 1440 А
А3. На рисунке показана электрическая схема с двумя амперметрами. Показание амперметра A1 — 40 мА. Показание амперметра А2 …
1) меньше 40 мА
2) 40 мА
3) больше 40 мА
4) меньше или больше 40 мА
А4. Напряжение — это физическая величина, показывающая
1) какой заряд перемещается по проводнику
2) какой путь проходит единичный положительный заряд в проводнике
3) какую работу совершает электрическое поле при перемещении единичного положительного заряда по проводнику
4) с какой скоростью движется единичный положительный заряд
А5. При перемещении по цепи заряда 0,5 Кл электрический ток совершил работу 40 Дж. Напряжение на этом участке цепи равно
1) 0,0125 В
2) 20 В
3) 40 В
4) 80 В
А6. Напряжение на каком-либо участке цепи можно измерить
1) амперметром, подключённым параллельно этому участку
2) амперметром, подключённым последовательно с этим участком
3) вольтметром, подключённым параллельно этому участку
4) вольтметром, подключённым последовательно с этим участком
B1. Установите связь между физическими величинами и единицами измерения.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) Электрический заряд
Б) Напряжение
ЕДИНИЦА ИЗМЕРЕНИЯ
1) А/с
2) А · с
3) Дж · Кл
4) Дж/Кл
5) Кл/с
Задачи с решением
Рассмотрим типовые задачи с решениями по этой теме.
Задача №1. Мощность электрического тока
В сеть напряжением 220 В включена электрическая лампа. Сила тока, проходящего через нее равна 0,45 А. Чему будет равна мощность электротока в лампе за 2 секунды?
Решение
- Записываем вводные данные: U=220 В, I=0,45A, t=2с, P=?
- Вспоминаем уравнение для определения мощности:\( P=U\times I\)
- Подставляем известные нам числовые значения в формулу и получаем ответ: P=99 Вт.
Задача №2. Расчет мощности электрического тока
В одной электролампе напряжение равно 24 В, а сила тока 0,7 А, во второй электролампе напряжение равно 120 В, а сила тока 0,5 А. У какой из этих двух электрических ламп мощность электротока больше?
Решение:
- Фиксируем исходные данные: U1=24 В, I1=0,7 А, U2=120 В, I2=0,5 А, P1=? P2=?
- По формуле \(P=U\times I\) находим P1 и P2. P1=16,8 Вт, P2= 24 Вт.
- Получаем ответ на задачу: мощность тока второй лампы больше мощности тока первой лампы.
Задача №3. Работа электрического тока
Какую работу совершает электроток в утюге с сопротивлением 80 Ом за 10 минут при условии, что утюг работает от сети 220 Вольт?
Решение
- Записываем «Дано»: U=220 В, R=80 Ом, t=10 мин., A=?
- Переводим минуты в секунды: 10 мин=600 с.
- Записываем формулу для определения работы электротока: \(A=\frac{U^2}R\times t\)
- Подставляем известные нам из условий задачи числовые значения в формулу и получаем ответ: 363000 Дж или 363 кДж.
Задача №4. Расчет работы электрического тока
Два троллейбуса имеют одинаковые электродвигатели. В настоящий момент они находятся в движении. Первый троллейбус двигается с большей скоростью, второй — с меньшей. У какого троллейбуса работа электротока больше, при условии, что сопротивление и время движения одинаковы?
Решение
- Данная задача не требует записи каких-либо формул. В ней проверяется понимание учащимися взаимозависимости двух физических величин.
- Чем больше скорость движения, тем больше мощность электротока. Чем больше мощность, тем больше и работа, совершаемая электродвигателем. Следовательно, у первого троллейбуса она будет больше.
Задача №5 на закон Джоуля-Ленца
Аккумулятор с электродвижущей силой, равной 6 В и внутренним сопротивлением 0,1 Ом питает внешнюю цепь, у которой сопротивление равно 12,4 Ом. Какое количество теплоты выделится за 10 минут работы аккумулятора?
Решение:
- Фиксируем имеющиеся данные: \(\epsilon\)=6 В, r=0,1 Ом, R=12,4 Ом, Q=?
- Переводим минуты в секунды, получаем 600 секунд.
- Общее количество теплоты будет определяться по формуле: Qвнутр+Qвнеш. \(Q_{внутр}=I^2\times R\times t\), \(Q_{внеш}=I^2\times r\times t \)
- По формуле \(I=\frac \epsilon{R+r}\) находим силу тока.
- Подставляем все известные нам данные в каждую формулу и получаем общее количество теплоты, выделенное за 10 минут работы, равное 1728 Дж.
Зависимость силы тока от напряжения и сопротивления
Когда разговор заходит о токе, то наиболее часто речь идет о напряжении. В системе СИ оно обозначается в вольтах (В). Для общего понимания определения напряжения рассмотрим физику формирования электричества в общем. В двух словах это процесс выглядит следующим образом. Из одного места извлекаются электроны, тем самым создавая разряжение. В другой точке они накапливаются, образуя избыток, который стремится занять освободившееся место. Таким образом образуются отрицательный и положительный потенциал, разница между ними и будет являться искомым напряжением в электрической сети. Для определения величины напряжения применяется специальный измерительный прибор – вольтметр.
Для того чтобы определить силу тока, зная напряжение, необходимо ввести еще одно понятие – сопротивление электроцепи. Оно в упрощенном понимании представляет собой некую силу, затрудняющую движение электронов от одного электрода к другому. Измеряется сопротивление в омах. Определить его величину можно омметром. Воедино понятия напряжение, силы тока и сопротивления связывает закон Ома. Он является одним из основополагающих при расчете любой электрической схемы.
Как рассчитать мощность резистора?
У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.
Сама по себе мощность постоянного тока рассчитывается по простой формуле:
Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.
Если в схему установить резистор меньшей мощности рассеивания, чем требуется, то резистор будет нагреваться и в результате сгорит. Поэтому, если в схеме нужно заменить резистор мощностью 0,5 Ватт, то ставим на 0,5 Ватт и более. Но никак не меньше !
Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:
Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.
Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?
Тут нам потребуется формула. Выглядит она так:
R(Ом) – сопротивление цепи (в данном случае резистора);
I(А) – ток, протекающий через резистор.
Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).
Рассчитаем мощность для нашего резистора:
Мы получили мощность 1 Ватт. Теперь небольшое отступление.
В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.
Поэтому нам подойдёт резистор мощностью 2 Вт (см. стандартный ряд мощностей резисторов).
Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.
Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?
Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.
Для его замены можно применить два соединённых последовательно резистора сопротивлением 20 Ом и 80 Ом. На какую мощность должны быть рассчитаны эти резисторы?
Для последовательной цепи действует одно правило. Через последовательно соединённые резисторы течёт один и тот же ток. Теперь применим формулу для расчёта мощности и получим, что мощность рассеивания резистора на 20 Ом должна быть равна 0,2 Вт, а резистора на 80 Ом — 0,8 Вт. Выбираем резисторы согласно стандартному ряду мощностей:
Как видим, если сопротивления резисторов будут разные, то и мощность на них будет выделяться разная.
Мощность, рассеивающаяся на резисторе, зависит в первую очередь от тока, который течёт через данный резистор. А ток зависит от сопротивления резистора. Поэтому, если вы соединяете последовательно резисторы разных номиналов, то и рассеивающаяся мощность распределиться между ними.
Это обстоятельство необходимо учитывать при самостоятельном конструировании электронных самоделок иначе при неправильном подборе резисторов может получиться так, что на одном резисторе выделиться больше мощности, чем на другом, и он будет работать в тяжёлом температурном режиме.
Чтобы не ломать голову и не рассчитывать мощность каждого в отдельности резистора, можно поступать так:
Мощность каждого резистора, входящего в составляемую нами цепь (параллельную или последовательную) должна быть равна мощности заменяемого резистора. Иными словами, если нам надо заменить резистор, мощностью 1 Вт, то каждый из резисторов для его замены должен иметь мощность не менее 1 Ватта. На практике это самое быстрое и эффективное решение.
Для параллельного соединения резисторов нужно учитывать, что через резистор с меньшим сопротивлением протекает больший ток. Следовательно, и мощности на нём будет рассеиваться больше.
«>