Схема элеваторного узла отопления

Содержание:

Устройство и работа регулируемого элеватора

1 – корпус;
2 – диффузор;
3 – камера смешения;
4 – сопло;
5 – наконечник конический;
6 – шток;
7 – узел сальниковый;
8 – стойка;
9 – поясок указательный;
10 – указатель положения;
11 – МЭП;
12 – рукоятка ручного дублера;
13 – кожух МЭП;
14 – заглушка резьбовая;
15 – винт ходовой;
16 – муфта;
17 – гайка;
18 – гайка шлицевая;
27 – патрубок сетевой воды;
28 – патрубок обратной воды;
29 – патрубок смешанной воды.

Основой регулирующего элеватора является корпус 1 с входным патрубком сетевой воды 27 и входным патрубком обратной воды 28.
Внутри корпуса расположены камера смешения 3 и сопло 4, которые вместе с диффузором 2 образуют струйный насос.
Действие струйного насоса основано на принципе инжекции. Поток сетевой воды, имеющий более высокое давление и
температуру, поступает через патрубок 27 в приемную камеру и через сопло 4 нагнетается в камеру смешения 3. В камере смешения
сетевая вода смешивается с водой, засасываемой из обратного трубопровода через входной патрубок 28, и подается в диффузор 2.
В диффузоре протекает процесс превращения кинетической энергии в потенциальную. Из диффузора через выходной патрубок 29
смешанный поток воды поступает в подающий трубопровод системы отопления.

Регулирование температуры воды смешанного потока осуществляется изменением соотношения между потоками сетевой воды и воды из обратного трубопровода.
Конический наконечник 5 перемещается относительно сопла 4 с помощью штока 6, при этом изменяется площадь проходного сечения
сопла, коэффициент смешения элеватора и, следовательно, соотношение между потоками воды, поступающими из входных патрубков в выходной патрубок.

Основные материалы, применяемые при изготовлении элеватора

Наименование детали Марка материала
Корпус №№ 0-2 – Чугун СЧ20,№№ 3-7 – Сталь углеродистая Ст20
Узел сальниковый Сталь углеродистая Ст20
Наконечник, шток, сопло Сталь нержавеющая 40Х13 (12Х18Н10Т)
Прокладка Паронит ПОН-Б
Набивка сальника Фторопласт Ф4К20

Герметизацию штока при его перемещении выполняет сальниковый узел 7, который вворачивается в корпус 1.

В корпусе 21 сальникового узла устанавливаются детали уплотнения: пружина 22, шайба 23, фторопластовые манжеты 24, втулка
25 и фиксирующая гайка 26.Применение пружины 22 обеспечивает постоянное поджатие манжет 24 с требуемым усилием, что увеличивает срок службы
уплотнения.
Перед сборкой сальникового узла манжеты 24 смазываются пластичной силиконовой смазкой, уменьшающей трение при движении штока, что также увеличивает срок службы уплотнения.Материал фиксирующай гайки 26 — латунь ЛС59, что обеспечивает ремонтопригодность сальникового узла.

Основные технические характеристики и размеры элеваторов типа ЭГ703 приведены в описании на регулятор Ретэл 703. Подробнее

Механизм электрический прямоходный (тип МЭП910) 11 предназначен для перемещения штока 6 с наконечником 5 при регулировании коэффициента смешения элеватора.

Текущее положение штока с наконечником определяется с помощью указателя положения 10. Ограничение полного хода регулирующего органа (РО) элеватора выполняется позиционными микропереключателями 35 SQ1, 36 SQ2 МЭП.

При аварийном отключении питания применяется ручной дублер. Для перемещения РО откручивается заглушка 14 и на ось 32 надевается до упора рукоятка 12, при этом разрывается цепь питания +24 В, что обеспечивает дополнительные меры безопасности.

Значения номинальных усилий на штоке для элеваторов:

Условное обозначение исполнения элеватора Номинальное усилие, Н
ЭГ703-4-0,04 №0… ЭГ703-18-094 №7 2000

Скорость перемещения регулирующего органа на предприятии-изготовителе устанавливается 5 мм/мин — для систем отопления.

МЭП представляет собой редуктор с встроенным шаговым электродвигателем.

Управление

Приведем порядок выполнения некоторых операций, связанных с работой элеватора.

Запуск отопления

Если система заполнена, достаточно лишь открыть домовые задвижки – и циркуляция начнется.

Несколько сложнее инструкция по запуску сброшенной системы.

  1. Открывается сброс на обратном трубопроводе и закрывается сброс на подаче.
  2. Медленно (во избежание гидроудара) открывается верхняя домовая задвижка.
  3. После того, как в сброс пойдет чистая, без воздуха, вода, он закрывается, после чего открывается нижняя домовая задвижка.

Шаровые вентиля на стояках отопления.

Работа без сопла

При катастрофически низкой температуре обратки в пик холодов практикуется работа элеватора без сопла. В систему поступает теплоноситель из трассы, а не смесь. Подсос глушится стальным блином.

Элеватор со снятым соплом и заглушенным подсосом.

Регулировка перепада

При завышенной обратке и невозможности оперативной замены сопла практикуется регулировка перепада задвижкой.

Как выполнить ее своими руками?

  1. Замеряется давление подачи, после чего манометр ставится на обратку.
  2. Входная задвижка на обратке полностью закрывается и постепенно открывается с контролем давления по манометру. Если просто прикрыть задвижку – ее щечки могут не полностью опуститься по штоку и соскользнуть вниз позже. Цена неправильного порядка действий – гарантированно размороженное подъездное отопление.

Щечки подвижно закреплены на штоке и могут сместиться под собственной тяжестью.

За один раз следует убирать не более 0,2 атмосфер перепада. Повторный замер температуры обратки проводится через сутки, когда все значения стабилизируются.

Принцип работы элеваторного узла

Принцип работы теплового элеваторного узла и водоструйного элеватора. В предыдущей статье мы с вами выяснили основное назначение теплового элеваторного узла и особенности эксплуатации, водоструйных или как их еще называют инжекционных элеваторов. Вкратце — основное назначение элеватора понижение температуры воды и одновременно увеличение объема прокачиваемой воды во внутренней системе отопления жилого дома.

Теперь разберем, как же все-таки работает водоструйный элеватор и за счет чего он увеличивает прокачку теплоносителя через батареи в квартире.

Теплоноситель поступает в дом с температурой соответствующей температурному графику работы котельной. Температурный график это соотношение между температурой на улице и температурой, которую котельная или ТЭЦ должны подать в теплосеть, и соответственно с небольшими потерями к вашему тепловому пункту (вода, двигаясь по трубам на большие расстояния, немного остывает). Чем холоднее на улице, тем большую температуру выдает котельная.

Например, при температурном графике 130/70:

  • при +8 градусах на улице в подающем трубопроводе отопления должно быть 42 градуса;
  • при 0 градусов 76 градусов;
  • при -22 градуса 115 градусов;

Если кого-то интересуют более подробные цифры, можете скачать температурные графики для различных систем отопления здесь .

Но вернемся к принципу и схеме работы нашего теплового элеваторного узла.

Пройдя входные задвижки, грязевики или сетчато-магнитные фильтра, вода поступает непосредственно в смешивающее элеваторное устройство — элеватор. который состоит из стального корпуса, внутри которого находится смешивающая камера и сужающее устройство (сопло).

Перегретая вода выходит из сопла в смешивающую камеру с большой скоростью. В результате в камере за струей создается разрежение за счет чего и происходит подсасывание или инжекция воды из обратного трубопровода. За счет изменения диаметра отверстия в сопле можно в определенных пределах регулировать расход воды и соответственно температуру воды на выходе из элеватора.

Элеватор теплового узла работает одновременно как циркуляционный насос и как смеситель. При этом он не потребляет электрическую энергию. а использует перепад давления перед элеватором или как еще принято говорить располагаемый напор в тепловой сети.

Для эффективно работы элеватора необходимо, что бы располагаемый напор в теплосети соотносился к сопротивлению системы отопления не хуже чем 7 к 1 . Если сопротивление системы отопления стандартной пятиэтажки 1м или это 0,1 кгс/см2 то для нормальной работы элеваторного узла необходим располагаемый напор в системе отопления до ИТП не менее 7 м или 0,7 кгс/см2.

Для примера если в подающем трубопроводе 5 кгс/см2 то в обратном не более 4,3 кгс/см2.

Обратите внимание на то, что на выходе элеватора давление в подающем трубопроводе не намного больше давления в обратном трубопроводе и это нормально, 0,1 кгс/см2 по манометрам заметить довольно сложно, качество современных манометров к сожалению на очень низком уровне, но это уже тема для отдельной статьи. А вот если у вас разница давлений после элеватора больше 0,3 кгс/см2 следует насторожиться, или у вас система отопления сильно забита грязью, или при капитальном ремонте вам очень сильно занизили диаметры разводящих труб. Выше сказанное не относится к схемам с терморегуляторами типа «Danfoss» на батареях и стояках, с ними работают только схемы смешения с применением регулирующих клапанов и смесительных насосов

Кстати и применение данных регуляторов тоже в большинстве случаев весьма спорно, поскольку на большинстве отечественных котельных применяется именно качественное регулирование по температурному графику. Вообще массовое внедрение автоматических регуляторов фирмы «Danfoss» стало возможным только благодаря хорошей маркетинговой компании. Ведь «перетоп» у нас явление очень редкое, обычно мы все тепло недополучаем

Выше сказанное не относится к схемам с терморегуляторами типа «Danfoss» на батареях и стояках, с ними работают только схемы смешения с применением регулирующих клапанов и смесительных насосов. Кстати и применение данных регуляторов тоже в большинстве случаев весьма спорно, поскольку на большинстве отечественных котельных применяется именно качественное регулирование по температурному графику. Вообще массовое внедрение автоматических регуляторов фирмы «Danfoss» стало возможным только благодаря хорошей маркетинговой компании. Ведь «перетоп» у нас явление очень редкое, обычно мы все тепло недополучаем.

Неисправности

Зачастую все поломки в элеваторном узле связаны с тем, что деталь просто ломается. Происходит это по причине изменения диаметра сопла или его засорения.

Также может испортиться арматура, грязевики, а также очень часто происходит сбой настроек регуляторных элементов. Очень часто поломки и сбои происходят из-за перепадов температур до подключения к системе и после нее.

Если параметры значительно разнятся, то это уже явный звонок того, что в работе блока произошли недочеты. Если расхождение в показателях совсем незначительное, то вероятнее всего сложности кроются в обычном загрязнении сопла.

Чтобы избавить сопло элеваторного узла от загрязнений, необходимо его снять и хорошенько прочистить ветошью и щеткой. Если диаметр описываемого элемента изменился по причине появления ржавчины, работа все системы отопления будет прервана.

При этом температура в квартирах на нижних этажах будет слишком высокой, а в квартирах наверху, наоборот, — тепла будет недостаточно. Чтобы устранить проблему нужно просто установить новое сопло.

Манометры отопительной системы устанавливаются перед грязевиком и за ним. Если показания на приборах свидетельствуют о сильном перепаде давления, значит загрязнен грязеочистительный элемент. Чтобы очистить его от загрязнений, нужно удалить весь мусор через спусковые краны, которые располагаются в нижней части узла. В случае, если решить проблему таким способом не удается, грязевик нужно разобрать и почистить.

Подводя итог всего вышеописанного, стоит сказать, что элеваторный узел — один из важнейших узлов отопительной системы, качественная работа которого очень важна.

Схемы подключения

Элеваторный узел может быть использован в системах с различными специфическими особенностями — однотрубных, автономных или иных линиях теплоснабжения. Принципы подачи теплоносителя, параметры потока не всегда позволяют обеспечить неизменный и стабильный результат на выходе. Для организации нормального теплоснабжения квартир или корректировки параметров потока, поступающего из магистральной сети, используются различные схемы подключения элеваторных узлов. Все они нуждаются в наличии дополнительного оборудования, иногда в достаточно больших объёмах, но результат, который достигается вследствие этого, компенсирует понесённые расходы. Рассмотрим существующие схемы подключения:

С регулятором расхода воды

Расход воды является основным фактором, делающим возможной регулировку режима обогрева помещений. Изменения расхода вызывают колебания температуры в жилых комнатах, что недопустимо. Вопрос решается установкой перед узлом смешивания регулятора, обеспечивающего постоянный расход воды и стабилизирующего тепловой режим.

Схема элеваторного узла смешения с регулятором расходом: 1 — подающая линия тепловой сети; 2 — обратная линия тепловой сети; 3 — элеватор; 4 — регулятор расхода; 5 — местная система отопления

Особенно важным такое решение становится в однотрубных системах, где имеется нагрузка в виде ГВС, дестабилизирующая расход горячей воды и создающая существенные колебания во время активного водоразбора (утренние и вечерние часы, праздничные и выходные дни). При этом данная схема не способна исправить ситуацию при изменениях температуры теплоносителя в магистральной линии, что является её недостатком, хоть и не слишком существенным. Падение температуры теплоносителя в питающих трубопроводах означает аварию на ТЭЦ или ином пункте нагрева, а это случается редко.

С регулирующим соплом

Схема подключения элеваторного узла с возможностью регулировки пропускной способности сопла позволяет оперативно реагировать на изменения параметров теплоносителя в магистральной линии.

Схема элеваторного узла с регулирующей иглой: 1 — подающая линия тепловой сети; 2 — обратная линия тепловой сети; 3 — элеватор; 5 — местная система отопления ; 6 — регулятор с иглой, вдвигаемой в сопло элеватора

При этом ручная регулировка малоэффективна, поскольку для этого надо постоянно подходить к элеватору, который обычно расположен в подвальном помещении. Наибольшая эффективность системы с регулируемым соплом достигается при полной автоматизации процесса, с использованием датчиков температуры и давления, подающих сигнал на сервопривод элеватора. Такая схема позволяет получить дополнительные возможности при настройке режима работы, но необходимость в ней возникает не всегда, а только в перегруженных или нестабильных системах с возможными колебаниями температуры теплоносителя.

Схема элеваторного узла с использованием датчиков температуры и давления, подающих сигнал на сервопривод элеватора

К недостаткам подобных схем принято относить необходимость изначально обеспечить высокое давление в системе, так как регулировка возможна лишь в пределах параметров потока в магистрали. Кроме того, нагрузки на механику, в частности — на сопло и иглу, создают необходимость постоянного наблюдения и своевременной замены элементов, вышедших из строя.

С регулирующим насосом

Подобные схемы используются при отсутствии достаточного для функционирования элеватора давления в питающих трубопроводах.

Схема элеваторного узла с корректирующим насосом: 1 — подающая линия тепловой сети; 2 — обратная линия тепловой сети; 3 — элеватор; 4 — регулятор расхода; 5 — местная система отопления ; 7 — регулятор температуры; 8 — смесительный насос

Увеличение давления делает возможным применение элеваторного узла в автономных тепловых сетях частного дома, позволяет обеспечить циркуляцию теплоносителя при исчезновении давления в магистрали. Насос устанавливается перед элеватором или на перемычке между прямым и обратным трубопроводами перед входом в элеватор. Для обеспечения нормального режима работы в дополнение к насосу требуется использовать регулятор температуры, а также необходимо подключение электропитания.

Устройство и принцип работы элеватора отопления

В точке входа трубопровода тепловых сетей, обычно в подвале, в глаза бросается узел, который соединяет трубы подачи и «обратки». Это элеватор — смесительный узел для отопления дома. Изготовляется элеватор в виде чугунной или стальной конструкции снабженной тремя фланцами. Это обычный элеватор отопления принцип работы его основан на законах физики. Внутри элеватора находится сопло, приемная камера, смесительная горловина и диффузор. Приемная камера соединяется с «обраткой» с помощью фланца.

Перегретая вода поступает на вход элеватора и проходит в сопло. Вследствие сужения сопла скорость потока увеличивается, а давление уменьшается (закон Бернулли). В область пониженного давления подсасывается вода из «обратки» и смешивается в смесительной камере элеватора. Вода уменьшает температуру до нужного уровня и одновременно уменьшается давление. Элеватор работает одновременно как циркуляционный насос и смеситель. Таков вкратце принцип работы элеватора в системе отопления здания или сооружения.

Схема теплового узла

Регулировку подачи теплоносителя осуществляют узлы элеваторные отопления дома. Элеватор – основной элемент теплового узла, нуждается в обвязке. Регулировочное оборудование чувствительно к загрязнениям, поэтому в обвязку входят грязевые фильтры, которые подключаются к «подаче» и «обратке».

В обвязку элеватора входят:

  • грязевые фильтры;
  • манометры (на входе и выходе);
  • термодатчики (термометры на входе элеватора, на выходе и на «обратке»);
  • задвижки (для проведения профилактических или аварийных работ).

Это самый простой вариант схемы для регулировки температуры теплоносителя, но она часто используется как базовое устройство теплового узла. Базовый узел элеваторный отопления любых зданий и сооружений, обеспечивает регулировку температуры и давления теплоносителя в контуре.

Преимущества его применения для отопления больших объектов, домов и высоток:

  1. безотказность, благодаря простоте конструкции;
  2. низкая цена монтажа и комплектующих деталей;
  3. абсолютная энергонезависимость;
  4. существенная экономия потребления теплоносителя до 30%.

Но при наличии бесспорных преимуществ использования элеватора для систем отопления следует отметить и недостатки применения этого прибора:

  • расчет делается индивидуально для каждой системы;
  • нужен обязательный перепад давления в системе отопления объекта;
  • если элеватор нерегулируемый, то невозможно изменить параметры контура отопления.

Элеватор с автоматической регулировкой

В настоящее время созданы конструкции элеваторов, в которых при помощи электронной регулировки можно изменять сечение сопла. В таком элеваторе имеется механизм, который перемещает дроссельную иглу. Она меняет просвет сопла и в результате меняется расход теплоносителя. Изменение просвета меняет скорость движения воды. В результате изменяется коэффициент смешивания горячей воды и воды из «обратки», чем достигается изменение температуры теплоносителя в «подаче». Теперь понятно, зачем в системе отопления нужно давление воды.

Элеватор регулирует подачу и давление теплоносителя, а его давление движет поток в контуре отопления.

5 Распределительные приспособления

Тепловой узел со всеми элементами его обвязки можно сравнить с нагнетательным циркуляционным насосом, подающим воду в отопительную систему под определённым давлением. Если объект содержит несколько потребительских точек, нужно распределить общий поток теплоносителя между всеми пользователями.

Это выполняется при помощи гребёнки для отопительной системы или коллектора. Приспособление представляет собой ёмкость, в которую поступает теплоноситель, а затем вытекает через несколько выходов с одним и тем же напором. Гребёнка выполняет функцию распределителя в системе отопления ГВС, позволяющая отключать, регулировать и делать ремонт потребительских точек, не останавливая отопительного процесса. Коллектор не допускает взаимного влияния ответвлений системы, а давление при этом такое же, как и на выходе элеватора.

Если нужно разделить водяной поток между двумя точками потребления, используется трёхходовой клапан с постоянным и переменным режимом работы. Приспособление устанавливается в определённых местах, где возникает необходимость разделения или полного перекрывания потока воды. Изготавливается трёхходовой кран из стали, чугуна или латуни. Оснащен он встроенным запорным устройством (шаровым, цилиндрическим или конусным). Изделие имеет вид тройника, может выполнять функцию смесителя.

Трёхходовые краны делятся на два вида — запорные и регулировочные. Они почти равнозначны, только запорным краном сложнее выполнять плавную регулировку температуры.

Технологии, применяемые в системе центрального отопления, разрабатываются и постоянно развиваются. Обычные элеваторы заменяются узлами элеваторного типа с применением автоматики для регулирования температуры подаваемого и обратного теплоносителя. Они отличаются экономичностью, но стоимость их довольно велика, а для выполнения функций необходимо подключение к электроэнергии.

Как устроен тепловой узел?

Вообще, техническое устройство каждого теплового пункта проектируется отдельно в зависимости от конкретных требований заказчика. Существует несколько основных схем исполнения тепловых пунктов. Давайте рассмотрим их по очереди.

Тепловой узел на основе элеватора.

Схема теплового пункта на основе элеваторного узла является наиболее простой и дешевой. Главный ее недостаток — невозможность регулировать температуру теплоносителя в трубах. Это вызывает неудобства у конечного потребителя и большой перерасход тепловой энергии в случае оттепелей во время отопительного сезона. Давайте посмотрим ниже на рисунок и разберемся в том, как работает эта схема:

Кроме того, что указано выше, в составе теплового узла может быть редуктор понижения давления. Он устанавливается на подаче перед элеватором. Элеватор является главной деталью этой схемы, в которой осуществляется подмешивание остывшего теплоносителя из «обратки» к горячему теплоносителю из «подачи». Принцип работы элеватора основан на создании разряжения на его выходе. В результате этого разряжения, давление теплоносителя в элеваторе оказывается меньше, чем давление теплоносителя в «обратке» и происходит смешение.

Тепловой узел на основе теплообменника.

Тепловой пункт, подключенный через специальный теплообменник позволяет разделять теплоноситель из теплотрассы от теплоносителя внутри дома. Разделение теплоносителей позволяет производить его подготовку при помощи специальных присадок и фильтрации.  При такой схеме появляются широкие возможности в регулировании давления и температуры теплоносителя внутри дома. Это позволяет снизить затраты на отопление. Для того, чтобы иметь наглядное представление о такой конструкции посмотрите ниже на рисунок.

Подмешивание теплоносителя в таких системах делается при помощи термостатических клапанов. В таких системах отопления в принципе можно применять алюминиевые радиаторы отопления, но долго они прослужат только при хорошем качестве теплоносителя. Если PH теплоносителя будет выходить за рамки одобренные производителем, то срок службы алюминиевых радиаторов может сильно сократиться. Качество теплоносителя вы контролировать не можете, поэтому лучше перестраховаться и установить биметаллические или чугунные радиаторы.

ГВС может быть подключена подобным образом через теплообменник. Это дает такие же преимущества по части регулирования температуры и давления горячей воды. Стоит сказать, что недобросовестные управляющие компании могут обманывать потребителей при помощи занижения температуры горячей воды на пару градусов. Для потребителя это почти не заметно, но в масштабах дома позволяет экономить десятки тысяч рублей в месяц.

Элеватор с регулируемым соплом.

Теперь нам осталось разобрать, как проще регулировать температуру на выходе элеватора
, и возможно ли с помощью элеватора экономить тепло.

Экономить тепло с помощью водоструйного элеватора возможно, например, понижая температуру в помещениях в ночное время

, или днем, когда большинство из нас на работе. Хотя этот вопрос тоже спорный, мы снизили температуру, здание остыло, следовательно, чтобы его заново прогреть расход тепло против нормы надо увеличить.
Выигрыш только в одном, при прохладной температуре 18-19 градусов спится лучше
, наш организм чувствует себя комфортнее.

Предполагается, что среда длится. Он завершен — если он оснащен всеми элементами, которые позволяют функционировать по назначению. Он подходит для использования — если технически и юридически законно в форме утверждений, утверждений и разрешений для использования.

Налоговые органы предполагают, что установки, системы и оборудование, установленные в зданиях, могут считаться полными и пригодными для использования, если. Включите все структурные компоненты для работы по назначению; Это не означает, однако, что они способны к самозанятости.

Для целей экономия тепла применяется специальный водоструйный элеватор с регулируемым соплом
. Конструктивно его исполнение и главное глубина качественной регулировки может быть различной. Обычно коэффициент смешения водоструйного элеватора с регулируемым соплом меняется в диапазоне от 2 до 5. Как показала практика, таких пределов регулировки вполне достаточно на все случаи жизни. «Danfoss» предлагает с диапазоном регулирования до 1 к 1000. Для чего это нам в системе отопления совершенно непонятно. А вот соотношение цены в пользу водоструйного элеватора с регулируемым соплом относительно регуляторов «Danfoss» примерно 1 к 3. Правда надо отдать должное «Данфосовцам» их продукция надежнее, хотя и не вся, плохо работают на нашей воде некоторые разновидности недорогих трехходовых клапанов. Рекомендация – экономить нужно с умом!

Основные элементы элеватора

Они не подключены постоянно к зданию, т.е. их можно отключить, не повреждая как структуру здания, так и установки, системы и устройства. Чтобы определить, может ли конкретный элемент рассматриваться как постоянный или нет, вы должны использовать классификацию основных средств.

Достоинства водоструйных элеваторов

Конечно, это не означает, что каждая установка, система или устройство, установленные в здании, могут быть автономными средами. Чтобы это произошло, рассматриваемый компонент. Он должен быть классифицирован как постоянный агент в КНТ и не должен представляться одновременно с разъяснением в оборудовании здания.

Принципиально все регулирующие элеваторы выполнены одинаково. Их устройство хорошо видно на рисунке
. , можете посмотреть анимированное изображение работы регулирующего механизма ВАРС водоструйного элеватора.

И на последок краткий комментарий — применение водоструйных элеваторов с регулируемым соплом
особенно эффективно в общественных и производственных зданиях
где позволяет экономить до 20-25% расходов на отопление, понижая температуру в отапливаемых помещениях в ночное время и, особенно, в выходные дни.

Мнение статистического управления будет полезно

Он не может быть постоянно подключен к зданию, т.е. его можно отключить без повреждения как здания, так и установки, системы и оборудования. Классификация долговечных средств — это систематический сбор объектов длительного свойства. Для целей бухгалтерского учета установить ставки амортизации и статистические тесты. Выделение данной меры для соответствующей классификации основных средств определяется ее назначением, дизайном и оборудованием.

Орган, уполномоченный на это, является статистическим управлением. Поэтому читателю следует обратиться в статистическое управление за помощью в классификации актива. Статистическое заключение классификационного бюро будет важным доказательством в налоговых органах.

Элеваторный узел системы отопления используется для подключения дома к внешней тепловой сети (источнику теплоснабжения) при необходимости снижения температуры теплоносителя посредством подмешивания к нему воды из обратного трубопровода.

Тепловая схема отопления с элеваторным узлом

Под элеваторным узлом отопительной системы подразумевается специальная конструкция, выполняющая функции инжектора или струйного насоса. Основной задачей схемы с таким устройством является повышение давления внутри системы отопления. То есть улучшение циркуляции жидкости по трубам и радиаторам за счёт увеличения объёма теплоносителя.

Повышение давления в схеме теплового узла основано на стандартных физических законах. При этом если в отопительной системе обнаружен элеваторный узел, то такое отопление имеет подключение к центральной магистрали, по которой под давлением подаётся нагретый теплоноситель из общей котельной.

При сильных морозах температурные показатели внутри основной магистрали подачи тепла могут достигать +150° C. Но это невозможно физически, так как при такой температуре вода превращается в пар. Однако превращение жидкости из одного состояния в другое под воздействием высоких температур, возможно в открытых ёмкостях без какого-либо давления. Но в отопительных трубах теплоноситель циркулирует под давлением, нагнетаемым с помощью циркуляционных насосов, что не позволяет ему превращаться в пар.

Наверняка каждому понятно, что температурные показатели свыше 100° C считаются слишком высокими и подавать такую воду в жилое помещение нельзя по ряду определённых причин.

  • Стандартные чугунные радиаторы, которые установлены в большинстве старых многоэтажных построек, не выносят резких температурных перепадов, из-за которых могут выходить из строя. В лучшем случае они начнут протекать, а в худшем чугун становится очень хрупким и легко разрушается.
  • Очень высокая температура радиаторов может привести к ожогу при прикосновении к металлическим элементам.
  • В последнее время схема разводки отопительной системы выполняется из пластиковых труб, которые могут выдержать температуру не выше +90° C. Следовательно, они могут расплавиться.

Поэтому перед подачей теплоносителя непосредственно в квартиру его необходимо остудить. Именно для этого и был изобретён элеватор. На сегодняшний день элеваторный узел в схеме тепловой системы является её неотъемлемой частью. Это было обусловлено его высокой устойчивостью функционирования при любых температурных изменениях в тепловой сети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector