Содержание:

Плюсы и минусы

Большинство цинковых сплавов имеют следующие преимущества:

  • они очень прочные, не повреждаются при механических воздействиях;
  • устойчивы к коррозии;
  • имеют хорошие литейные качества, могут использоваться для создания даже мелких элементов;
  • со временем практически не подвергаются старению.

Однако примеси даже в незначительном количестве ухудшают характеристики сплава. Приводят к снижению жидкоплавкости, к набуханию, способствуют появлению трещин. Поэтому цинковые сплавы должны создаваться с соблюдением всех технологий, а количество примесей в них не должно превышать 0,005%.

Многие спрашивают, темнеют или нет цинковые сплавы? В этом еще один недостаток материала. Цинковые сплавы могут темнеть с течением времени. Притом потемнения обычно распространяются на всю поверхность материала. Это обуславливается образованием оксидной пленки на поверхности материала. Она формируется при комнатной температуре после контакта с воздухом или водой. Поэтому во избежание этого требуется нанесение гальванических покрытий.

Способы чистки

Если же загрязнений избежать не удалось, предлагаем вам ознакомиться с действенными методами очистки.

Средство для мытья посуды (чтобы освежить)

Этот метод самый простой и подойдет для того, чтобы отчистить незначительные загрязнения и освежить изделие. Вам потребуются:

  • средство для мытья посуды;
  • таз;
  • мягкая губка.

Наберите в таз теплую воду и добавьте туда несколько капель моющего средства. Хорошо вспеньте. Поместите изделие в полученный мыльный раствор и оставьте на некоторое время. Затем возьмите губку и удалите размокшую грязь с поверхности металла. По завершении процедуры тщательно промойте предмет под проточной водой и вытрите насухо.

Лимонная кислота (от зеленого налета)

Данный способ поможет вам справиться с зеленоватым налетом. Вам понадобятся:

  • лимонная кислота;
  • теплая вода (желательно дистиллированная).

Для начала приготовьте 10%-й раствор лимонной кислоты: 10 г порошка смешайте со 100 г теплой воды. Поместите в раствор медное изделие и понаблюдайте за ним: вы увидите, как зелень будет отделяться от поверхности металла и окрашивать жидкость в зеленый цвет. Как только весь налет будет растворен, достаньте изделие и тщательно прополощите под струей воды.

Если под рукой нет лимонной кислоты, натрите половинкой лимона поверхность металла и оставьте на некоторое время. Затем ополосните изделие.

Убрать мутноватый налет и освежить медные изделия можно с помощью обычного средства для мытья посуды

Уксус + соль (от темных пятен)

Если на медных изделиях появились темные пятна окиси, рекомендуем вам следующий способ. Приготовьте такие компоненты:

  • столовый уксус;
  • поваренную либо морскую соль.

Смешайте 1 стакан укуса с 1-2 ст. л. соли. Не дожидаясь полного растворения соли, поместите в данную смесь медные предметы и немного потрите поверхность изделий солью. Результат вы увидите мгновенно – от окислений не останется и следа. По окончании чистки тщательно ополосните предметы и вытрите насухо.

Паста томатная/кетчуп (от черноты)

Этот на первый взгляд необычный способ на самом деле хорошо зарекомендовал себя для очистки медных изделий от черноты. Вам потребуются:

  • томатная паста или кетчуп;
  • лоскут хлопчатобумажной ткани.

Нанесите на изделие обильное количество кетчупа и оставьте на 1 час. По прошествии времени отрезом материи хорошо потрите медный предмет и смойте водой. Этот метод поможет не только эффективно устранить пятна, но и вернуть яркость цвета металлу.

С темными пятнами на поверхности изделий поможет справиться кетчуп

Мука + соль + уксус (для блеска)

Данный метод поможет вам не только отмыть загрязнения, но и подарит изделию ослепительный блеск. Вам понадобятся:

  • пшеничная мука;
  • поваренная соль;
  • столовый уксус.

Смешайте ингредиенты в равных долях и натрите полученной кашицей медный предмет. Оставьте на некоторое время. Затем хорошо промойте изделия под проточной водой и вытрите насухо.

Для полировки медных предметов советуем воспользоваться листами черно-белой газеты. Сомните несколько страниц и полученным комочком пройдитесь по поверхности металла. Изделие заблестит как новое!

Соль + уксус (от сильных загрязнений)

Для старых въевшихся загрязнений, которые сложно поддаются удалению, у нас припасен особый способ. Потребуются:

  • поваренная соль;
  • столовый уксус;
  • кастрюля или миска из нержавейки.

В кастрюле смешайте половину стакана соли со стаканом уксуса и поместите медный предмет в полученный раствор. Поставьте емкость на огонь и доведите до кипения. Выключите огонь и оставьте до полного остывания. Затем достаньте изделия и тщательно ополосните водой.

Храните медную посуду в чистом сухом месте и периодически протирайте чистой тряпкой

Надеемся, что наши советы помогут вам содержать медные изделия в отличном состоянии на радость себе и домочадцам. В завершение статьи хочется добавить, что в чистой блестящей посуде блюда гарантировано будут получаться вкуснее и ароматнее.

Как вода воздействует на описываемый металл?

Коррозия алюминия в воде может наступить от повреждения верхнего слоя и защитной пленки. Высокая температура жидкости способствует скорейшему разрушению металла. Если алюминий поместить в пресную воду, то коррозионные процессы практически не будут наблюдаться. Если повысить температуру воды, то изменений можно не заметить. Когда жидкость нагревается до температуры 80 градусов и выше, то металл начинает портиться.

Скорость коррозии алюминия увеличивается, если в воду попадает щелочь. Описываемый металл обладает повышенной чувствительностью к соли. Именно поэтому морская вода для него губительна. Чтобы использовать этот металл в морской воде, необходимо в жидкость добавлять магний или кремний. Если использовать лист алюминия, в составе которого есть медь, то коррозия сплава будет протекать гораздо быстрее, чем у чистого вещества.

Почему ржавеет «нержавейка»

Ржавчина на нержавеющей стали вызывает много вопросов. Действительно ли эта сталь нержавеющая? Если это нержавейка, то почему она заржавела? Откуда берется ржавчина? Будет ли нержавейка ржаветь и дальше, и приведет ли это к образованию сквозной коррозии?

Нержавеющие стали устойчивы к коррозии потому, что их состав имеет высокий процент хрома. Когда этот элемент присутствует в стали в достаточном количестве и подвергается окислительному воздействию кислот, щелочей, воды, воздуха и других сред, он образует очень тонкий (130 ангстрем) непроницаемый слой оксида CrO, который останавливает дальнейшую коррозию.

В этом плане нержавеющие стали очень похожи на алюминий, который также формирует защитный окисный слой. От оксида алюминия слой CrO отличается тем, что он никогда не бывает таким толстым, что даже виден невооруженным глазом. Хром должен быть распределен равномерно в структуре стали для того, чтобы она стала «нержавейкой».

Что приводит к образованию ржавчины на поверхности из нержавеющей стали?

Ржавчина образуется на поверхности из нержавеющей стали тогда, когда недостаточно легирующего хрома для создания и поддержания необходимого оксидного слоя.

Простейшее условие, при котором ржавление может возникнуть на нержавеющей стали, – контакт обычной углеродистой или низколегированной стали с нержавеющей.

Еще один вид формирования ржавчины на нержавеющей стали происходит во время сварки, например, при сварке с использованием порошковой проволоки. На неочищенной поверхности нержавеющего металла может остаться тонкий слой свободного железа, который легко ржавеет, если металлическая поверхность не была очищена абразивным или химическим способом после сварки.

Технология изготовления и эксплуатации нержавеющей стали должна предусматривать отсутствие ее контакта с обыкновенной сталью, например, при изготовлении столов, подъемных средств, складских стеллажей и других металлоконструкций. Железная пыль, образующаяся при измельчении, резке, струйной очистке, должна быть как можно дальше от мест, где используется нержавеющая сталь.

Чистящие и абразивные инструменты, такие как шлифовальные круги и проволочные щетки, использованные ранее на углеродистой или низколегированной стали, не должны впоследствии применяться на нержавеющих сталях.

Для нержавеющей стали должны использоваться проволочные щетки только из нержавейки. Постоянное применение металлических щеток, даже из нержавейки, не рекомендуется, так как они оставляют на поверхности механические повреждения, способствующие образованию коррозии. Очистку проволочной щеткой можно использовать для удаления сварочного шлака.

Наличие свободного железа на поверхности нержавеющей стали, легко определяется путем опрыскивания стали водой и выдержки во влажном состоянии в течение нескольких часов.

Зоны, содержащие свободное железо, заржавеют и окрасятся.

Гораздо более быстрым способом выявления свободного железа является ферроксильный тест. Состав для обработки поверхности включает:

1) дистиллированная вода – 1 литр,

2) азотная кислота – 30 миллилитров,

3) ферроцианид калия – 30 грамм.

Обработка металла должна производиться в защитной одежде, поскольку состав содержит кислоту и цианиды. Поверхность на загрязненных зонах окрасится в синий цвет в течение нескольких минут. Затем состав нужно смыть водой и нейтрализовать раствором соды. Однако этот метод не подходит для испытания поверхностей, соприкасающихся с пищевыми продуктами.

Очень часто процесс коррозии развивается по краям сварного шва. Цвет оксидов может варьироваться от соломенного до темно-коричневого, в конечном итоге они превращаются в красный цвет ржавчины.

При нормальных атмосферных условиях коррозия, связанная со сваркой, не развивается, а просто выглядит некрасиво. Сварные швы должны быть очищены в течение одного или двух дней после сварочных работ, грубые или шероховатые поверхности должны быть зашлифованы, удалены царапины, шлак, флюс и брызги.

В продаже имеется много специальных чистящих веществ для нержавеющих сталей. Эти моющие средства изготавливаются на основе азотной или соляной кислот; они обычно удаляют небольшой слой материала (около 0,025 мм). После выдержки на поверхности они должны быть тщательно смыты и нейтрализованы водой с содой.

Пассивация в азотной кислоте изделий из нержавеющей стали помогает ускорить формирование оксидной пленки хрома, препятствующей корродированию металла.

Почему изделия из меди необходимо регулярно чистить

Медные турки, ковши, самовары отличаются высокой теплопроводностью, потому нагрев в них протекает равномерно, а продукты готовятся быстрее. Это обуславливает высокую популярность изделий в быту. Потребность в чистке медных предметов обусловлена утратой ими внешней привлекательности со временем. Особенно быстро тускнеют и теряют естественный цвет изделия, находящиеся на воздухе или часто нагревающиеся.

Окисная пленка – патина – популярна лишь там, где требуется придание вещам винтажного облика, стилизация под старину. В противном случае она портит вид посуды, утвари, украшений и статуэток. Чтобы устранить оксидный налет, элементы потемнения и вернуть блеск, придется периодически чистить предметы. Также очищение требуется для исключения попадания в еду вредных соединений, которые могут присутствовать в черном или зеленом слое.

Что такое медь?

Медь – это пластичный, но одновременно прочный металл красновато-бурого цвета. Является одним из основных элементов периодической системы. Сплав на основе меди используется для изготовления других металлов, таких как бронза и латунь.

Сфера применения данного металла чрезвычайно широка. Благодаря своей прочности он очень востребован в строительстве при изготовлении проводов, арматур, медных сеток, проволок и прочего. В сельскохозяйственной промышленности медь применяется в составе медного купороса. Из меди изготавливают большинство духовых музыкальных инструментов. Также этот металл широко используется при создании сантехнических труб.

Несмотря на то, что медь не относится к драгоценным металлам, она также востребована и в ювелирном деле. Можно встретить множество красивых и очень изящных медных украшений: браслеты, крестики, цепочки, серьги, кольца и прочее. Также для придания золотым украшениям большей прочности используется примесь меди.

Джезвы (турки) из меди давно стали популярным аксессуаром для любителей вкусного кофе

Изделия из этого металла можно часто встретить на кухне. Благодаря стойкости к коррозии и хорошей проводимости тепла медь используют для изготовления огромного множества кухонной утвари: чайники, кастрюли, подносы, казанки, джезвы, котелки и прочее.

Не лишним будет также добавить, что в старину, наряду с золотом и серебром, медь употреблялась для изготовления монет, которые в простонародье так и называли – медяки. Многие монеты сохранились и до наших дней.

Медная монета времен царской России

К сожалению, при отсутствии правильного и своевременного ухода предметы из меди могут потерять свой первоначальный блеск, приобрести загрязнения и помутнеть. Поговорим о главных правилах, которые необходимо соблюдать при уходе за медными изделиями.

Кабели из катодной меди: применение

Современная кабельная продукция, сделанная с использованием бескислородной меди, отличается повышенной проводимостью. Это дает возможность осуществлять высокую пропускную способность электрических сигналов при меньших сечениях проводов.

Однако стоит отметить, что широкого использования кабели из бескислородной меди не нашли. А все потому, что провода из этого металла отличаются высокой стоимостью. Для достижения нужных параметров используют простые медные с большим диаметром, предпочитая не тратиться на дорогие изделия из бескислородной меди.

Но есть и области, в которых предпочтение отдается высокой проводимости в сочетании с небольшим диаметром проводов. Это необходимо для обеспечения в том числе эстетичного вида. К таким сферам относятся производство музыкального оборудования, качественных наушников, а также те, где надо получить устройства, воспроизводящие высококачественные звуки профессионального уровня.

При применении такой меди отмечаются ее достоинства в противостоянии внутренней коррозии. Благодаря этому свойству провода из бескислородной меди со временем характеристик своих не теряют. По этой причине кабели с начинкой из этого металла используют в условиях, где присутствует высокая влажность.

Коррозионные свойства

В сухом воздухе образуется тонкая оксидная пленка, толщина которой составляет около 50 нм. В пресной воде скорость коррозии металла составляет 0,05–0,25 мм/год. Однако при содержании в жидкости аммиака, сероводорода, хлоридов и некоторых других примесей интенсивность коррозионного процесса возрастает.

В морской воде коррозия меди незначительна, и интенсивность ее соизмерима с разрушением в пресной. Однако при увеличении скорости движения среды возникает ударная коррозия, что приводит к повышению скорости процесса. Коррозия меди существенно зависит от температуры, и при возрастании последней скорость разрушения увеличивается.

Медь является единственным материалом, который не подвержен обрастанию водорослями, так как ее ионы губительно действуют на них. В почве, насыщенной микроорганизмами, скорость коррозионных процессов заметно возрастает. Интенсивность их протекания напрямую зависит от pH грунта. Чем больше отклонение значения показателя от нейтрального, тем быстрее происходит коррозия металла. Влияние микроорганизмов на процесс разрушения обуславливается выделением сероводорода в результате их жизнедеятельности.

Продукты почвенной коррозии элемента отличаются от атмосферной, имеют более сложный состав и структуру.

Коррозия меди, покрытой слоем олова (луженой), практически отсутствует. При качественном лужении она прекрасно служит под воздействием града и снега, становится нечувствительной к перепаду температур. Срок службы таких материалов составляет около 100 лет. При этом не теряются первоначальные свойства. Со временем цвет не изменяется, а остается первоначальным — серебристо-металлическим. Луженая медь прекрасно показала себя в качестве кровельного материала. Ведь не зря купола многих храмов покрывают именно этим материалом.

Из-за высокой коррозионной устойчивости к воздействию многих агрессивных сред медь нашла широкое применение в химической промышленности.

В гальванической паре она является катодом для большинства металлов и сплавов и в результате электрохимических процессов при контакте с ними вызывает их ускоренную коррозию.

Коррозийные свойства

В связи с отсутствием у меди химической активности, при контакте с водой, влажным воздухом ее коррозия практически не возникает. Находясь в сухом воздухе, у металла может образовываться небольшая оксидная пленка толщиной до 50 нм. Если изделие лужено, то пленка почти не образовывается. Качественное покрытие из олова способно надежно защитить от влаги, перепадов температуры. При этом продолжительность эксплуатации такого предмета может составлять до 100 лет без потери первоначальных свойств. С течением времени цвет не будет изменяться. Применение луженных поверхностей давно показало себя с лучшей стороны. Примером могут стать купола множества храмов.

В связи с высоким порогом коррозийной стойкости медь активно применяется во многих химических и электрохимических производствах. К примеру, процесс обмеднения металла помогает решить множество задач при обработке. В одной из прошлых статей, мы рассматривали процедуру в домашних условиях, рекомендуем ознакомиться.

Коррозийные свойства меди

Медь – металл с высокими пластическими свойствами, имеющий красно-золотистый цвет, а после удаления оксидной пленки – чуть розоватый. По электропроводности он уступает лишь серебру, также характеризуется высокой теплопроводностью. Благодаря низкому удельному сопротивлению медь применяется в электротехнике: идет на изготовление медных пластинок, проволоки, обмотки двигателей.

Медь – неактивный химический элемент, поэтому практически не взаимодействует с воздухом, водой (пресной, морской). Если воздух сухой, на поверхности материала формируется оксидная пленка толщиной до 50 мн. Медное изделие темнеет, становится коричневым или зеленоватым, это называется патиной. В ряде случаев патина воспринимается как декоративное покрытие. Интенсивность коррозии низкая при контакте с разбавленной соляной кислотой, но при реакции с рядом иных кислот, с галогенами, «царской водкой» металл окисляется с образованием карбоната меди.

Примечания

  1. Джуа М. «История химии», перевод с итальянского Г. В. Быкова под редакцией С. А. Погодина. — Москва: Мир. Редакция литературы по химии, 1975.
  2. https://www.chem.msu.su/rus/history/element/Zn.html
  3. Галмей // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Woodcroft B. Subject-matter index (made from titles only) of patents of invention, from March 2, 1617 (14 James I.), to October 1, 1852 (16 Victoriae). — London, 1857. — P. 444.
  5. IV. Specification of Mr. Emerson’s Patent for making Brass with Copper and Spelter // The Repertory of Arts, Manufactures, and Agriculture. — London, 1796. — Vol. V. — P. 24-25.
  6. Guest, Edwin . On certain Foreign Terms, adopted by our Ancestors prior to their Settlement in the British Islands (Part II). //Proceedings of the Philological Society . — London, June 11, 1852. — Vol. 5 — No. 124 — P. 188-189.
  7. Автоматная латунь — статья из Большой советской энциклопедии (3-е издание)

Свойства меди

Медь — это переходный элемент с ярко выраженными пластическими свойствами. Имеет золотистый цвет, а при отсутствии оксидной пленки — с добавлением розового. Это первый металл, который начал использовать человек. Латинское наименование элемента Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где в древности медь добывалась. Второе название — Aes, в переводе с латыни означает «руда» или «рудник».

Пластичный металл широко используется человеком.

  • На воздухе металл покрывается оксидной пленкой, которая придает ему отличительный красно-желтый цвет. Медь вместе с золотом, осмием и цезием имеет преимущественно яркую окраску, что отличает их от других металлов, имеющих серебристый или серый цвет. Этот металл имеет высокую теплопроводность, а по электропроводности уступает только серебру.
  • Медь характеризуется высокими коррозионными качествами и не реагирует с водой и разбавленной соляной кислотой. Окисляется «царской водкой», галогенами, кислородом. На воздухе с повышенным содержанием влаги металл окисляется и образует карбонат меди, который составляет верхний слой патины. Процесс образования защитной оксидной пленки на открытом воздухе длителен и может продолжаться несколько лет. В результате этого поверхность металла темнеет и приобретает коричневатый оттенок. После образования пленки на металле появляются соли меди, имеющие зеленоватую окраску. Оксид меди и соли называется патиной. Цвет ее изменяется от коричневатого до зеленого и черного и зависит от многих внешних факторов. Патина нейтральна к меди и наделена защитными и декоративными свойствами.
  • Имея низкое удельное сопротивление, этот металл широко используется в электротехнике. Из него делают проволоку, идущую на изготовление обмоток электродвигателей. Листовой материал идет на изготовление различных элементов электрических аппаратов. Наличие в составе металла даже небольшого количества примесей значительно снижает его электропроводность.
  • Медь используется для производства сплавов. На ее основе изготовляются латунь, бронза, дюралюминий и др. Благодаря высоким антикоррозионным характеристикам они широко используются для плакировки металлов с целью уменьшения коррозионного износа.

Как очистить хром с помощью народных средств?

Издавна наши предки сталкивались с проблемой ржавчины на металлических предметах. Поэтому сегодня существует множество народных методов, которые помогут убрать ржавчину с хромированных поверхностей. Перед тем как очистить бытовые приборы от ржавых пятен с помощью специализированных составов, попробуйте применить ниже описанные средства.

Применение уксуса

Уксус считается самым эффективным средством против ржавчины. Налейте раствор в полиэтиленовый пакет, после этого ржавые детали поместите в него на несколько часов. Небольшие по размеру элементы можно полностью погрузить в раствор, к крупным же предметам придется прикрепить пакет с помощи резинки или прищепки. По прошествии двух-трех часов коррозийные пятна исчезнут, поверхность останется только просушить и протереть чистой тряпкой.

Лимонный сок или Кока-кола

Любые жидкости, в составе которых содержатся кислоты, эффективно растворят ржавый налет. Аналогично первому случаю хромированную деталь нужно погрузить в лимонный сок или обработать поверхность изделия долькой лимона. В этих же целях подойдет и всем известная Кока-кола. Если коррозийные пятна небольшие, просто полейте сверху этим напитком и оставьте деталь на некоторое время.

Пищевая сода и газированная вода

Для борьбы со ржавчиной отлично подойдет пищевая сода и газированная вода. Их можно использовать вместо стандартных чистящих средств. Для удаления наиболее стойких пятен воспользуйтесь металловатой – она хорошо удаляет коррозию, не повреждая пораженную ржавом поверхность.

Рыбий жир

Предотвратить появление ржавых пятен на хроме поможет рыбий жир

Обратите внимание, что это должен быть обычный рыбий жир без каких-либо витаминных добавок. При помощи данного средства постепенно уберите все остатки коррозии на поверхности, ля этого нанесите жир не менее двух раз на пораженные участки

При этом смесь должна оставаться на покрытии в течение двух недель.

3 Защита сплавов и способы остановить коррозию

Итак, немного узнав об особенностях разрушения цветных металлов, стоит уделить внимание вопросу, как остановить нежелательную коррозию алюминия, его сплавов и иных выше описываемых материалов. Безусловно, лучшим вариантом будет предупредить ее, но для этого необходимо знать некоторые нюансы

Так, например, максимальной коррозионной стойкостью обладает сверхчистый алюминий, еще для работы с ним и его сплавами следует подбирать наиболее подходящую среду. Кроме того, защита может осуществляться и такими способами, как создание на поверхности изделия лакокрасочного покрытия, металлизация, шлифовка либо дробеструйная обработка, вследствие которых возникают остаточные напряжения сжатия.

Что же насчет изделий из меди и ее сплавов, так и в этом случае меры борьбы практически такие же, как и в случае с алюминием. Условия эксплуатации, а именно pH среды, тут менее значимы, разрушение будет все равно в ощутимой степени. Действительно, произошла ли коррозия меди в сильно кислой среде или же какой-то другой, в любом случае элемент нуждается в тщательной очистке. Затем наносится защита, в качестве которой может выступать краска, лак, масло или же иной металл, такой как олово и алюминий. Метод, когда поверхность покрывают тонким слоем расплавленного олова, называется лужение.

Дабы предотвратить коррозию латуни в результате обесцинкования, в ее состав добавляют немного мышьяка, этот процесс называется легированием. Нейтрализовать же действие аммиака способны кислотные оксиды, однако с ними также нельзя переусердствовать. Кроме того, если речь идет об изготовлении латунных труб и иных изделий, то следует отказаться от таких операций, как безоправочное волочение, а также сборка с «натягом», дабы избежать возникновения растягивающих напряжений. Таким можно представить краткое руководство по защите от коррозии алюминия, латуни, меди и их сплавов. Конечно, особенностей невероятное множество, но об этом лучше поговорить в отдельных статьях.

Диаграмма состояния Cu — Zn


Диаграмма состояния Cu-Zn Медь с цинком образуют кроме основного α-раствора ряд фаз электронного типа β, γ, ε. Наиболее часто структура латуней состоит из α- или α+β’- фаз: α-фаза — твёрдый раствор цинка в меди с кристаллической решёткой меди ГЦК, а β’-фаза — упорядоченный твёрдый раствор на базе химического соединения CuZn с электронной концентрацией 3/2 и примитивной элементарной ячейкой.

При высоких температурах β-фаза имеет неупорядоченное расположение () атомов и широкую область гомогенности. В этом состоянии β-фаза пластична. При температуре ниже 454—468 °C расположение атомов меди и цинка в этой фазе становится упорядоченным, и она обозначается β’. Фаза β’ в отличие от β-фазы является более твёрдой и хрупкой; γ-фаза представляет собой электронное соединение Cu5Zn8.

Однофазные латуни характеризуются высокой пластичностью; β’-фаза очень хрупкая и твёрдая, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные.

Содержание цинка в меди оказывает влияние на механические свойства отожжённых латуней.

При содержании цинка до 30 % возрастают одновременно и прочность, и пластичность. Затем пластичность уменьшается, вначале за счёт усложнения α — твёрдого раствора, а затем происходит резкое её понижение в связи с появлением в структуре хрупкой β’-фазы. Прочность увеличивается до содержания цинка около 45 % , а затем уменьшается так же резко, как и пластичность.

Большинство латуней хорошо обрабатывается давлением. Особенно пластичны однофазные латуни. Они деформируются при низких и при высоких температурах. Однако в интервале температур 300—700 °C существует зона хрупкости, поэтому при таких температурах латуни не деформируют.

Двухфазные латуни пластичны при нагреве выше температуры β’-превращения, особенно выше 700 °C, когда их структура становится однофазной (β-фаза). Для повышения механических свойств и химической стойкости латуней в них часто вводят легирующие элементы: алюминий (Al), никель (Ni), марганец (Mn), кремний (Si) и т. д.

Почему алюминий не ржавеет?

Следующие факторы замедляют и даже полностью приостанавливают процесс порчи металла:

1. Для сохранения антикоррозионных свойств алюминия значение имеет кислотно-щелочной баланс (pH) в диапазоне от 6 до 8 единиц.

2. Металл без примесей лучше справляется с агрессивной средой. Согласно экспериментам, сплав, состоящий на 90% из чистого алюминия, в 80 раз быстрее подвергается коррозии, чем сплав, который состоит на 99% чистого металла.

3. Дополнительный защитный слой помимо естественного сохраняет структуру металла даже в агрессивных средах. Для этого используют анодирование защитного слоя, покрытие специальными красками и полимерными составами.

4. Предотвратить появление ржавчины помогает добавление марганца на 3% в процессе производства алюминия.

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Для реакции Al 3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.

Температура плавления алюминия — 660 °C.

Плотность алюминия — 2,6989 г/см 3 (при нормальных условиях).

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!

Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.

Эффективные методы очистки меди

Провести чистку медных предметов несложно, для этого не понадобятся дорогостоящие средства. Вот самые популярные методики, применяемые в домашних условиях:

  1. Кетчуп. Взять немного томатного кетчупа, смазать им изделие, оставить на две минуты. После ополоснуть струей воды.
  2. Раствор для мытья посуды. Намылить хозяйственную губку обычным средством для посуды, тщательно протереть поверхность, смыть водой. Этот способ лучше всего подходит для изделий, которые лишь немного потускнели.
  3. Лимон. Натереть медную поверхность долькой лимона, после пройтись по ней щеткой с жесткими ворсинками и помыть водой.
  4. Уксус и мука. Влить в чашку немного уксуса, добавить муку до получения теста средней густоты. Смазать медь тестом, оставить до высыхания, потом удалить остатки, а изделие натереть мягкой тряпочкой.
  5. Уксус и соль. Налить в кастрюлю из нержавеющей стали уксус 9%, всыпать немного соли, дать закипеть. Огонь выключить, в раствор положить медный предмет, не убирать его до остывания жидкости. Этот способ подходит для сильно загрязненных поверхностей.

Латунь ржавеет или нет

О латуни слышал каждый человек: у кого-то дома хранятся старинные реликвии от прабабушек, а кто-то увлекается коллекционированием красивых антикварных вещиц. История латуни началась еще до нашей эры, что говорит о ее полезности и необходимости для человечества. Тогда, в давние времена, латунь представляла собой сплав из меди с галмеем (карбонатом цинка). В Древнем Риме называли этот металл «златомедью» из-за схожести с золотом; из латуни чеканили монеты: сестерции и дупонии. Кроме прозвища «златомедь», латунь также получила название «вечный» металл. Это объясняется рядом уникальных особенностей и технических свойств, которыми она обладает, а также широкой сферой ее использования. Но такой, какой она является сейчас, латунь стала в XVIII веке благодаря Джеймсу Эмерсону. Именно он, соединив медь с металлическим цинком, официально получил этот сплав.«Вечный» металл схож с бронзой и имеет близкие технические свойства и характеристики:

  • устойчивость к длительному трению;
  • текучесть при плавлении;
  • стойкость к коррозии.

Что такое электрохимическая коррозия и может ли она быть на листе алюминия?

Вам будет интересно:Что такое «патриции»? Исторические сведения

Чаще всего появление электрохимической коррозии провоцируют гальванические пары. Повреждение появляется в месте соединения двух разных сплавов. В таком случае ржавчина будет явно бросаться в глаза. Важным моментом является то, что портится только один металл, а второй является источником запуска коррозионного процесса. Чтобы не бояться электрохимической коррозии, нужно использовать магниевый сплав. Специалисты из-за электрохимической ржавчины не рекомендуют использовать обычное железо при контакте с кузовом из алюминия.