Содержание:
- Светодиодные лампы в зависимости от цветовой температуры света
- Устройство светодиодных источников света
- Основные способы подключения
- Устройство и принцип действия
- Схема мощного драйвера с входом ШИМ
- Устройство лампы на светодиодах
- Схема типового LED драйвера мощной лампочки на 220 В
- Как узнать какой светодиод стоит в лампе
- Какие светодиоды стоят в лампах?
- Полярность
- Как сделать своими руками драйвер для светодиодов
- Жизнь вторая
- Обзор плюсов и минусов
- Выбор драйвера
Светодиодные лампы в зависимости от цветовой температуры света
Рассматривая виды и характеристики светодиодных ламп нельзя не остановиться на таком параметре, как цветовая температура света. Несмотря на слово «температура» это понятие абсолютно не имеет отношения к вырабатываемому лампочкой теплу. Оно означает визуальное восприятие цветового спектра света, который излучает светильник.
Поэтому не нужно путать физическую и цветовую теплоту. Показатель цветовой температуры измеряется в Кельвинах, которая у светодиодов может достигать показаний до 7000 К.
Теплый свет
Для выбора светодиодных светильников существуют определенные правила. В зависимости от назначения помещения используются лампы с подходящей теплотой. Например, светильники с температурой в диапазоне от 2500 до 3500 К, обладающие «теплым светом», создают комфортную атмосферу. Желтый цвет, аналогичный свету, излучаемому лампой накаливания, подойдет для мест отдыха.
Дневной свет
Лампы дневного света с температурой в диапазоне от 4000 до 5000К обладают нейтральным цветовым излучением и используются преимущественно в помещениях для работы. Они хорошо подойдут для рабочего стола, кухни, ванной.
Холодный свет
Наиболее яркий холодный свет излучают лампы с температурой свыше 5500 К. Такие светильники устанавливают в местах, где нужно обеспечить поддержание энергичного состояния: в мастерских, гаражах и т. д. Однако при длительном пребывании под холодным освещением может появиться чувство усталости.
Устройство светодиодных источников света
Светодиодный источник состоит из следующих конструктивных элементов:
- LED-диоды;
- драйверы;
- корпус;
- радиатор;
- цоколь.
Светодиоды
Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.
Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.
Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.
Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.
Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.
Драйверы
Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.
Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.
Дешевые драйверы применяют в обычных фонариках, в которых светодиоды питаются от батареек. В таком случае нет необходимости в резисторе, ограничивающем ток. Из-за этого диоды могут получать повышенный ток, что приводит к их скорому выходу из строя.
Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).
Цоколь
Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.
За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.
Корпус
В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.
Потребляя то же количество электроэнергии, изделия светят намного ярче аналогов. Обычная светодиодная лампа имеет закрытую колбу, производимую из стекла или пластика. Матовое покрытие понижает светопропускаемость, но это незначительные издержки производства.
Радиаторы
Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.
Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.
Основные способы подключения
Так как светодиодные светильники имеют разный угол обзора, то их обычно подключают по разным схемам. Выбор схемы подключения зависит прежде всего от:
- способа крепления;
- угла освещения светодиода;
- количества светильников в помещении.
Всего схем подключения три:
- последовательная;
- параллельная;
- лучевая.
Последовательная схема
Последовательная схема подключения светодиодных светильников проста и используется, если нет особых требований к дизайну освещения. Преимущество — экономия кабеля и простота монтажа. Все лампы подключаются по цепочке одна за другой. Однако если один из светильников выйдет из строя, погаснет все цепочка. Чтобы обнаружить неполадку, нужно будет проверять каждый из них.
Последовательная схема подключения лампы.
В одной цепи допускается соединение не больше 6 светильников или лампочек. В противном случае их яркость будет снижаться из-за роста общего сопротивления цепи.
Параллельная схема
Параллельная схема позволяет подключить светодиодный светильник каждый по отдельности. Для светильников на 12 В потребуется установка нескольких диммеров или одного на всю параллельную схему.
При схеме от выключателя тянется общий кабель, который имеет ответвление к каждой лампочке. Если один из светильников выйдет из строя, то он потухнет, не задев всю систему освещения. Неисправный прибор будет виден сразу и его можно будет быстро заменить.
Схема параллельного подключения
Этот способ более трудоемкий и требует большего количества кабеля. Однако такая схема рассчитана прежде всего на помещения с большой площадью. При таком подключении яркость света не будет зависеть от количества лампочек.
Лучевая схема
Лучевая схема подключения светодиодной лампы используется для подключения лампочек в люстрах. Она напоминает собой параллельный способ. В этой схеме кабель идет от выключателя к распределительной розетке или узлу, от которого отходят отдельные ответвления или лучи к каждой лампочке.
Если один из светодиодов перегорит, то остальные будут светиться, т.к. к каждому ведет отдельный провод.
Главным минусом этого способа подключения является трудоемкость. При использовании способа в помещении с большой площадью возможен такой прием: центральный кабель тянется в центр зала, а от него отходят лучи к каждому светильнику.
Лучевой способ подключения
Устройство и принцип действия
Светодиоды излучают свет благодаря наличию p-n-перехода. На этом участке контактируют носители заряда p- и n-типа. Катод (n-тип) – это полупроводник с отрицательным зарядом, а анод (p-тип) является носителем положительного заряда (дырки). То есть, в первом образуются дырки (участки, где нет электронов), а второй скапливает электроны. На их поверхности размещены контактные площадки из металла, к которым прикреплены выводы методом пайки.
Когда к полупроводнику р-типа поступает положительный заряд, а к электрону n-типа – отрицательный, то на границе между диодом и катодом начинает протекать ток. При прямом включении отрицательные и положительные электроны встречаются, и на участке перехода (p-n-переход) происходит их рекомбинация (обмен). При подаче отрицательного напряжения со стороны катода на область р-типа, то происходит прямое смещение. Свечение появляется при выделении фотонов в результате обмена.
Схема мощного драйвера с входом ШИМ
Ниже показана схема для питания мощных светодиодов:
Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.
Особенности драйвера
- Напряжение питания: 5 — 24 В, постоянное;
- Выходной ток: до 1 А, регулируемый;
- Выходная мощность: до 18 Вт;
- Защита от КЗ по выходу;
- Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).
Принцип действия
Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.
Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.
Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.
D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.
Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:
- 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
- 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
- 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.
В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.
Устройство лампы на светодиодах
В зависимости от назначения осветительного прибора и особенностей производственных линий фирмы-производителя, устройство светодиодной лампочки может иметь некоторые, достаточно ощутимые отличия, которые следует учитывать при выборе.
Устройство светодиодной лампы LED
Фирменные изделия
Конструкционными особенностями LED-ламп на 220В, которые выпускаются производителями с мировой известностью, является наличие следующих обязательных составляющих:
- светорассеивающей полусферы;
- чипов;
- алюминиевой печатной платы с пастой достаточной теплопроводности, что позволяет регулировать работоспособность чипов;
- радиаторов на основе анодированного сплава алюминия;
- драйвера, имеющего схему гальванически развязанного модулятора;
- полимерного основания цоколя в виде полиэтилентерефталат;
- цокольной части, имеющей никелевое покрытие.
Следует отметить, что драйвер обладает повышенной плотностью монтажа таких частей, как трансформатор импульсного типа, микросхемы и полярные конденсаторы, а также различные планарные элементы.
Диодные лампы на 220В принято считать максимально безопасными для эксплуатации в жилых помещениях, что обусловлено отсутствием стекла, которое может стать причиной травмы.
Низкокачественные китайские лампочки
Именно недостаточно высоким качеством и отсутствием целого ряда элементов, объясняется низкая стоимость светодиодных источников света, выпускаемых китайским производителем:
- отсутствие радиатора;
- отсутствие драйвера;
- наличие простого питающего блока в виде неполярного конденсатора;
- отсутствием надежной стабилизации выходного тока.
Питающей блок устанавливается в центральной части платы со световыми диодами. На одной стороне присутствует диодный мост и резисторы, а на другой – пара конденсаторов.
Процесс охлаждения в китайских источниках света осуществляется посредством точечных малоэффективных отверстий в корпусе, что и становится основной причиной частого перегорания кристаллов.
Filаmеnt лампы
- светодиодными стержнями;
- стеклянной колбой;
- металлической цокольной частью;
- платой драйвера.
В качестве дополнения можно рассматривать наличие основания цокольной части.
Таким образом, светодиодный филамент можно рассматривать как прямоугольный или круглый стержень из стекла с миниатюрными светодиодными кристаллами.
Нанесение на каждый элемент толстого силиконового слоя желтого люминофора помогает предотвратить прохождение ультрафиолетовых лучей, а также позволяет получить максимально равномерное рассеивание светового потока.
Схема типового LED драйвера мощной лампочки на 220 В
Для того чтобы снизить уровень выдаваемой мощности преобразователя (ведь по факту уже в 2 раза меньше нагрузка), пришлось вникнуть в схему драйвера и изменить токозадающим резистором значение выхода.
Можно конечно было просто перерезать дорожку на выходе и поставить туда резистор по-мощнее, но не факт что его мощность не расплавила бы пластиковый корпус лампы.
В общем найдя похожую по схемотехнике включение микросхемы преобразователя, удалось выяснить что ток задаётся парочкой низкоомных резисторов. Он был задан на 100 миллиампер сопротивлением 2 Ома. Поставив 4 Ома его значение изменилось на 60 миллиампер, а 5,6 Ом снизили его до 40 мА. На этом и остановился.
LED лампа вновь вернулась с респауна на своё законное место в настольном светильнике. Насколько хватит её теперь сказать трудно, но в любом случае получен превосходный опыт ремонта подобных устройств и при следующем перерождении просто придётся перепаять все SMD светодиоды, вновь подняв её мощность до 100%.
Как узнать какой светодиод стоит в лампе
Самый простой вариант – если лампа полностью исправна. В этом случае надо просто измерить падение напряжения на любом из элементов. Если при подаче питания один или несколько элементов не светят (или все), надо идти другим путем.
Если лампа построена по схеме с драйвером, то на драйвере указано выходное напряжение в виде верхнего и нижнего пределов. Это связано с тем, что драйвер стабилизирует ток. Для этого ему надо изменять напряжение в определенных границах. Фактическое напряжение придется измерить мультиметром и убедиться, что оно в норме. Далее визуально (по дорожкам печатной платы) определить количество параллельных цепочек светодиодов в матрице и количество элементов в цепочке. Напряжение драйвера нужно разделить на число последовательно соединенных элементов. Если напряжение на драйвере не обозначено, то его можно лишь замерить по факту.
Драйвер на рабочий ток 300 мА и выходное напряжение 45-64 В.
Если светильник построен по схеме с балластным резистором и его сопротивление известно (или его можно измерить), то напряжение светодиода можно определить расчетным способом. Для этого надо знать рабочий ток. В этом случае надо рассчитать:
- падение напряжения на резисторе – Uрезистора=Iраб*Rрезистора;
- падение напряжения на цепочке LED – Uled=Uпитания – Uрезистора;
- разделить Uled на количество приборов в цепочке.
Если Iраб неизвестен, его можно принять равным 20-25 мА (схема с резистором применяется для маломощных фонарей). Точность будет приемлема для практических целей.
Какие светодиоды стоят в лампах?
Наверное самое частое явление, вскрываешь лампу а там следующая картина, выгорел один из диодов. Если есть время и желание провести ремонт, то можно заменить вышедший из строя диод. Но появляется вопрос Какие светодиоды стоят в лампах?
Соответственно наш порядок действий.
- Вам необходимо воспользоватся вольтметром и определить напряжение светодиода. Вам может помочь в этом наша статья Как проверить светодиод?
- Далее после того как вы определили весь светодиодный модуль вышел из строя или одиночный светодиод. Вам нужно определить тип светодиода, а именно его габариты корпуса. Измеряются они в миллиметрах. Вам может помочь в этом наша статья Размеры светодиодов . Но статья может и не пригодится так как, зачастую производители зачастую пишут тип светодиода на самой плате. Смотрите фото. Там будет указано 2835, 5050 или 5630 это и есть тип светодиода
- Далее зная корпус диода и его напряжение вам не составит ни какого труда приобрести нужные вам светодиоды или светодиодные модули на Aliexpress. Или выпаять диод из другой похожей светодиодной лампы.
Полярность
Подключение светодиодов необходимо производить в соответствии с полярностью. Это требование относится ко всем полупроводниковым приборам, и в раной степени затрагивает светодиодные устройства. Обычно анод и катод визуально отмечаются на корпусе прибора, но есть и другие способы определить их расположение:
- мультиметром, переведенным в режим омметра. При
неправильном присоединении щупов стрелку зашкалит, а если поменять их местами,
будет отображено сопротивление элемента. Этот вариант подключения —
правильный. У современных тестеров есть режим «проверка диодов», который делает
проверку еще проще; - кратковременной подачей питания. Этот вариант
допустим, если под рукой есть аккумулятор или батарейка с напряжением не больше
4 В. Оптимальный вариант — устройство с плавным изменением напряжения
(лабораторный трансформатор). Если при подаче номинального напряжения светодиод
не загорелся, значит, подключение неправильное; - визуальным осмотром. Большинство элементов имеют
на корпусе специальные отметки — плоские площадки, обозначающие катод,
разная длина ножек (анод длиннее). На мощных светодиодах (1 ватт и выше)
определить полярность проще всего — обычно она отмечена значками «+» и
«-».
Как сделать своими руками драйвер для светодиодов
При помощи готовых микросхем даже начинающий радиолюбитель в состоянии собрать преобразователь для светодиодов различной мощности. Для этого требуется умение чтения электросхем и опыт работы с паяльником.
Собрать токовый стабилизатор для 3-ваттных стабилизаторов, можно используя микросхему от китайского производителя PowTech – PT4115. Данная ИМС может быть использована для светодиодных элементов с мощностью более 1 Вт и состоит из блоков управления с довольно мощным транзистором на выходе. Преобразователь, созданный на основе PT4115, имеет высокую эффективность и минимальный набор компонентов.
Как видим при наличии опыта, знаний и желания можно собрать светодиодный драйвер практически по любой схеме. Теперь рассмотрим пошаговую инструкцию создания простейшего токового преобразователя для 3-х LED-элементов мощность по 1 Вт, из зарядного устройства для мобильного телефона. Кстати, это поможет лучше разобраться в работе устройства и позднее перейти к более сложным схемам, рассчитанным на большее количество светодиодов и ленты.
Инструкция по сборке драйвера для светодиодов
Изображение | Описание этапа |
---|---|
Для сборки стабилизатора на потребуется старое зарядное устройство от мобильного телефона. Мы взяли от «Самсунга», так они надежны. Зарядное устройство с параметрами 5 В и 700 мА аккуратно разобрать. | |
Также нам понадобится переменный (подстроечный) резистор на 10 кОм, 3 светодиода по 1 Вт и шнур с вилкой. | |
Вот так выглядит разобранное зарядное, которое мы будет переделывать. | |
Выпаиваем выходной резистор на 5 кОм и на его место ставим «подстроечник». | |
Далее находим выход на нагрузку и определив полярность припаиваем светодиоды, заранее собранные последовательно. | |
Выпаиваем старые контакты от шнура и на их место подсоединяем провод с вилкой. Перед тем как проверить на работоспособность драйвер для светодиодов нужно убедиться в правильности соединений, их прочности и чтобы ничего не создало короткого замыкания. Только после этого можно приступать к тестам. | |
Подстроечным резистором начинаем регулировку пока светодиоды не начнут светиться. | |
Как видим LED-элементы горят. | |
Тестером проверяем необходимые нам параметры: выходное напряжение, ток и мощность. При необходимости выполняем регулировку резистором. | |
Вот, и все! Светодиоды горят нормально, нигде ничего не искрит и не дымит, а значит переделка прошла успешно, с чем вас и поздравляем. |
Как видите сделать простейший драйвер для светодиодов очень просто. Конечно, опытным радиолюбителям эта схема может быть не интересна, но для новичка она отлично подойдет для практики.
Жизнь вторая
Прежде чем начать операцию по спасению, нужно обзавестись парочкой полезных приспособлений — это кусок шнура с сетевой вилкой на 220 В и такой-же провод, но с патроном и кнопкой.
С ними очень удобно проводить измерение, проверку и перепайку лампочки прямо на столе, не бегая после каждого изменения к розетке (светильнику).
Для отделения пластиковой колбы от корпуса, можно на поставить в место стыка нож и несколько раз ударить по нему молотком, делаем это аккуратно, перемещая по кругу. Подробнее о ремонте было здесь.
Сняв колбу видно десяток SMD светодиодов, каждый из которых легко проверяется обычным блоком питания. Экспериментально установлено рабочее напряжение примерно 10 — 12 вольт. Как и ожидалось, один светодиод не выдержал суровой жизни и сгорел.
Можно конечно его выпаять и заменить на аналогичный, но это надо иметь подходящее оборудование (паяльную станцию), нужные диоды на замену, и желание всем этим заниматься. Проще содрать с него гелевый слой с кристаллом и замкнуть, банально залив припоем верхнюю часть.
До блока питания даже не пришлось добираться — всё заработало и лампа вновь заняла свое почетное место.
Обзор плюсов и минусов
В соотношении светодиодных ламп и ламп накаливания, светодиодные лампочки очень экономичны и с длительным сроком эксплуатации.
Учитывая сроки службы, проводится анализ, что за период эксплуатации одной светодиодной лампочки потребуется 50 ламп накаливания (расчеты по среднему значению).
Но диодные конструкции тоже имеют свои отрицательные стороны: высокая цена, но быстрая окупаемость.
Диодный вариант освещения имеет более широкий ряд цветового освещения, в то время как ЛН всего один.
Диодный прибор не требует обслуживания, но к концу срока службы возможно снижение эффективности, что вызвано мутнением кристалла.
Вольфрамовый источник сильно нагреваются в процессе работы, на это уходит половина затраченной энергии, что приводит к низкому коэффициенту полезного действия. КПД диодных источников гораздо выше, так как нагрев у них минимальный.
Освещение используется в темное время. Глаза человека к этому времени устают и требуют спокойного на них воздействия. Поэтому освещение должно быть теплым. Этот пункт полностью выполняет ЛН, так как СЛ в основном излучает белые оттенки, причем в световом потоке наблюдается присутствие синего оттенка, который негативно влияет на зрение (особенно детское). Такого плана освещение лучше применять в офисах, производствах.
Среди СЛ встречаются подделки, характеризующиеся плохим качеством сборки. Также они негативно влияют на зрение мерцанием.
Рекомендуем посмотреть видео:
Выбор драйвера
Выбор драйвера во многом определяет место, где планируется установка светильника.
Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20
Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий
Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.
Блоки питания и драйверы для светодиодных светильников
Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.
Блок питания PLD-60-1050B для внутреннего светодиодного освещения
Требования к драйверам в зависимости от назначения светильника:
Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.
Герметичный контроллер с драйвером светодиодного светильника
Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.
Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.
От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон
Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью
Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.