Содержание:
- Доборные элементы
- Как подготовиться к расчетам
- Задача. Изменение площади при изменении длины сторон
- Калькулятор площади треугольника по трем сторонам
- Пошаговый расчет площади комнаты
- Метод Герона
- Калькулятор для неправильной фигуры
- Как посчитать квадратные метры стены с окном
- Зачем проводить расчет площади комнаты?
- Методика выполнения работы
- Несколько советов
- Инструменты для определения квадратных метров
- Как найти площадь треугольника
Доборные элементы
Расчет дополнительной фурнитуры
Для полноценного монтажа необходима дополнительная фурнитура, так называемые доборные элементы. Такие детали можно приобрести как дополнительно, так и в комплекте с металлочерепицей. В первую очередь они необходимы для надежности кровли, в особенно ненадежных местах, а уже потом их можно рассматривать как часть декорации.
Элемент можно купить в среднем – 200 рублей за погонный метр. Но нужно подумать, что нам необходимо и для чего, а также подсчитать, во сколько это обойдется, в случае если придется покупать.
Итак, рассмотрим, нам необходимо:
- Конек, планки торцевые, которые будут защищать от атмосферных явлений – дождь, ветер, и планка примыкания – для дополнительной герметизации различных стыков, к примеру, печной трубы. И это только самое необходимое, есть еще другие дополнительные детали, и они особенно необходимы, если система кровли сложная, многоскатная.
-
Барьер снеговой – для защиты водостока от внезапного обрушения снега, карнизная планка – защищает от попадания под конек пыли и грязи. Мы сейчас рассмотрим, как подсчитать самые необходимые комплектующие элементы, а потом исходя из расчетов, вы окончательно решите, что приобретать. Чтобы подсчитать количество фурнитуры нужно:
- измерить длину конька, все будет зависеть, каких размеров будут планки, так как на стыки уходит 10 см, стандартный конек – 2 метра, к примеру, если длина конька 6 м, то понадобится покупать 4 планки, а это 800 рублей;
- торцевые планки выпускаются разной длины, так и монтируются на торцевых скатах, высчитывается аналогичным образом, то есть с учетом, что на стыки должно уходить 10 см;
- планка примыкания – рассчитывается по описанному выше принципу.
Кроме этого, необходимы саморезы стоимость их варьируется от 3 до 7 рублей за штуку. После подсчетов, можно подумать о цвете, если вы хотите, чтобы ваш дом выделялся и был виден издалека, то выбирайте любой яркий цвет. Качественно выполненная черепица не выгорает на солнце и не теряет своих качеств, и вы можете не беспокоиться, что со временем ваша крыша потеряет свой первоначальный вид.
Как подготовиться к расчетам
Проведение подготовительных манипуляций заключается в подготовке места для измерений. Также необходимо подготовить инструмент и специальные принадлежности. Лучше если комната будет свободной от посторонних предметов. Часто такое случается при замерах в новом доме или во время проведения ремонта. Замеры длины сторон производятся вдоль стенок. При этом нужно освободить хотя-бы участки, для свободного проведения рулеткой. Результаты замеров можно сразу же перенести на схему. Обязательно следует проверить прямоугольности комнаты. Для этого выполняется замер диагональных линий.
Кроме рулетки вам может понадобиться специальная линейка для проверки прямых линий. Это может быть строительный уровень или правило. Иногда необходим строительный угольник больших размеров. Как вариант, самодельный циркуль. Можно использовать кусок шнура, привязанный к острому штырю. Для пола можно использовать специальные принадлежности для замеров. Для этого подойдет маркер, мел или скотч. Замеры выполняйте несколько раз.
Это позволит избежать ошибки. Следите, чтобы лента для проведения замеров не провисала. Помните, что на многие измерительные инструменты наносится две шкалы. Нельзя путать метрическую систему и дюймовую.
Перед замерами набросайте простой план – схему на бумаге. Это позволит правильно распределить все замеры. Стоит учитывать, что многие формулы расчетов очень сложные. В этом случае посчитать в столбик не получится. Чтобы посчитать без ошибок, можно воспользоваться программой Excel.
Задача. Изменение площади при изменении длины сторон
Во сколько раз увеличится площадь треугольника, если стороны увеличить в 4 раза?
Решение.
Поскольку размеры сторон треугольника нам неизвестны, то для решения задачи будем считать, что длины сторон соответственно равны произвольным числам a, b, c. Тогда для того, чтобы ответить на вопрос задачи, найдем площадь данного треугольника, а потом найдем площадь треугольника, стороны которого в четыре раза больше. Соотношение площадей этих треугольников и даст нам ответ на задачу.
Далее приведем текстовое пояснение решения задачи по шагам. Однако, в самом конце, это же самое решение приведено в более удобном для восприятия графическом виде. Желающие могут сразу опуститься вниз решения.
Для решения используем формулу Герона (см. выше в теоретической части урока). Выглядит она следующим образом:
S = 1/4 sqrt( ( a + b + c)(b + c — a)(a + c — b)(a + b -c) ) (см. первую строку рисунка внизу)
Длины сторон произвольного треугольника заданы переменными a, b, c.
Если стороны увеличить в 4 раза, то площадь нового треугольника с составит:
S2 = 1/4 sqrt( ( 4a + 4b + 4c)(4b + 4c — 4a)(4a + 4c — 4b)(4a + 4b -4c) ) (см. вторую строку на рисунке внизу)
Как видно, 4 — общий множитель, который можно вынести за скобки из всех четырех выражений по общим правилам математики.
Тогда
S2 = 1/4 sqrt( 4 * 4 * 4 * 4 ( a + b + c)(b + c — a)(a + c — b)(a + b -c) ) — на третьей строке рисунка
S2 = 1/4 sqrt( 256 ( a + b + c)(b + c — a)(a + c — b)(a + b -c) ) — четвертая строка
Из числа 256 прекрасно извлекается квадратный корень, поэтому вынесем его из-под корня
S2 = 16 * 1/4 sqrt( ( a + b + c)(b + c — a)(a + c — b)(a + b -c) )
S2 = 4 sqrt( ( a + b + c)(b + c — a)(a + c — b)(a + b -c) ) (см. пятую строку рисунка внизу)
Чтобы ответить на вопрос, заданный в задаче, нам достаточно разделить площадь получившегося треугольника, на площадь первоначального.
Определим соотношения площадей, разделив выражения друг на друга и сократив получившуюся дробь.
S2 / S = 16 (см. внизу подробнее запись в виде дроби и ее сокращения — в последней строке)
На рисунке логика вычисления решения, описанного выше, приведена уже в виде формул (одна за другой)
Ответ: Площадь треугольника увеличится в 16 раз
10380.6235
Сумма углов треугольникаОписание курса Медиана треугольника
Калькулятор площади треугольника по трем сторонам
Как известно, треугольником принято называть плоскую геометрическую фигуру, многоугольник, который ограничен минимальным количеством сторон. Также, стоит помнить, что всякий многоугольник делится на определённое количество треугольников.
Для этого необходимо соединить его вершины такими отрезками, которые не пересекали бы его стороны. Вот почему, зная как рассчитать площадь треугольника, Вы можете получить площадь большинства геометрических фигур.
Формула Герона для вычисления площади треугольника по трем сторонам
В том случае если нам известны параметры каждой стороны нашего треугольника, мы можем рассчитать площадь фигуры по формуле Герона. Для её упрощения следует применить новую величину, так называемый полупериметр, который является суммой всех сторон треугольника, которая разделена пополам.
После получения значения полупериметра, Вы можете приступать к расчёту площади по руководствуясь следующей формулой: S = sqrt(p(p-a)(p-b)(p-c)), в которой «p» – полупериметр, «a,b,c» – стороны фигуры и sqrt –квадратный корень.
Пример вычисления площади треугольника по трем сторонам
Рассмотрим на примере вычисление площади треугольника по формуле Герона.
p = (a + b + c)/ 2 где p – половина периметра треугольника.
таким образом S = √ p ( p – a ) ( p – b ) ( p – c ) .
(Это также называется формулой Герона)
Дано:
Треугольник со сторонами a = 4, b = 5, c = 3.
Задание:Найдите площадь треугольника
Решение:
Используйте формулу половинного периметра:
p = (3 + 4 + 5)/ 2= 6
Полученные значения подставляем в формулу Герони:
S = √ 6 ( 6 – 3 ) ( 6 – 4 ) ( 6 – 5 ) =
√ 6 ⋅ 3 ⋅ 2 ⋅ 1 = √ 36 =6
Ответ: 6
Историческая справка
Формула приписывается Герону, живущему в Александрии, который был греческим инженером и математиком в 10 – 70 годах нашей эры
Среди прочего, он разработал первый известный паровой двигатель, но его рассматривали как игрушку!
Пошаговый расчет площади комнаты
Шаг 1. Первым делом необходимо приготовить все измерительные инструменты, а также листок и ручку. На бумаге можно предварительно начертить схему комнаты, стараясь максимально сохранить геометрию и отобразить все ниши и детали помещения. Рулетка используется максимально длинная.
Подготовка всего необходимого
Шаг 2. Измеряется длина комнаты. Если она настолько велика, что рулетки не хватает, то замеры снимаются поэтапно. Для начала производится замер на максимальную длину рулетки, в месте ее окончания делается отметка, от которой потом снова производится замер до конца комнаты.
Для начала нужно измерить длину комнаты
Шаг 3. Измеряется ширина комнаты (вдоль стены с меньшей длиной). Рулетка располагается под прямым углом к ранее измеряемой стене комнаты (длине). Полученные данные записываются.
Измеряется ширина комнаты
Шаг 4. Полученные показатели перемножаются между собой. Для этих целей рекомендуется использовать калькулятор. При необходимости значение площади округляется в большую сторону.
Полученная цифра округляется в большую сторону
Шаг 5. Если необходимо измерить площадь сложной геометрически комнаты, то для начала сложная фигура делится на несколько простых – квадратов, треугольников, прямоугольников. Объект изображается на листочке бумаги схематически, схематически делится.
Комната разделена на 4 прямоугольника
Шаг 6. Производится замер каждой фигуры в отдельности. Например, прямоугольники, треугольники.
Каждая фигура замеряется отдельно
Шаг 7. Производится вычисление площади каждой фигуры. Далее все полученные значения суммируются и получается полная точная площадь пола комнаты.
Пример расчета площади треугольника
Метод Герона
Античный математик Герон Александрийский предложил свой способ получения квадратуры треугольника. Для вычислений достаточно знать длину трех его сторон, хотя сама методика достаточно сложна и не поддастся пятиклассникам:
- Определите периметр: сложите отрезки сторон: a+b+c. Разделите число надвое. Полученные данные называются полупериметр (p) и имеют ключевое значение в геометрическом уравнении Герона.
- Проведите вычисление по формуле: p (p — a) (p — b) (p — c). Т.е. сначала вычтите по отдельности длину каждой из сторон из значения полупериметра, а затем перемножьте между собой три полученных числа и сам полупериметр.
- Извлеките корень из итогового значения. Искомая величина найдена.
Например, грани длиною 3, 4 и 5 см образуют полупериметр 6 см. После умножения согласно формуле получается значение 36. Корень из 36 равняется 6. Значит, 6 см2 — площадь этого треугольника. Для равносторонней фигуры расчет еще проще.
Калькулятор для неправильной фигуры
Очень часто измеряемое пространство имеет очень сложную форму, которую не всегда удается разбить на простые элементы.
Чтобы просто определить такую площадь, стоит воспользоваться интернет-приложением SketchAndCalc. Он является калькулятором площади неправильных фигур для любой формы изображения. Это единственный калькулятор площади, способный вычислять по загруженным изображениям, он имеет уникальную функцию, которая позволяет пользователю установить масштаб чертежа любого изображения, прежде чем рисовать периметр. Таким образом, углы или кривые неправильной фигуры легко вычисляются.
Проще говоря, если есть изображение, которое можно загрузить, или адрес карты для поиска, можете рассчитать площадь неправильной фигуры независимо от того, насколько сложна она, просто рисуя периметр области. Калькулятор может даже суммировать вычисления нескольких площадей вместе путем рисования слоев. После вычисления первой области можно добавить новый слой чертежа, что позволяет выполнить неограниченное количество вычислений области.
Результаты калькулятора площади отображаются в дюймах и метрах, увеличивая его полезность и устраняя необходимость преобразования. Это наряду с точными инструментами рисования и увеличения гарантирует, что площади каждой неправильной фигуры рассчитываются точно. Он также может размещать правильные формы многоугольника с фиксированными углами и точными линиями.
Инструмент с ограниченным рисунком привязывается к общим углам, а линию длины можно редактировать вручную с помощью клавиатуры. Приложение полезно, если измеряемая область имеет прямую сторону или длину. Еще одной уникальной особенностью SketchAndCalc TM является то, что он имеет продвинутый инструмент рисования кривой для неправильных фигур. Некоторые приложения калькулятора области позволяют осуществлять поиск по карте.
SketchAndCalc делает это очень точно, используя поиск по долготе и широте. Независимо от того, находится ли замеряемая область на сельскохозяйственных землях или в море, пользователь будет тратить меньше времени на поиск и больше времени на расчет площади территории. Это универсальная утилита, применяемая во многих отраслях промышленности, в строительстве, садоводстве. Она используется и энтузиастами по благоустройству своего дома и придомовой территории. Калькулятор ландшафта или калькулятор земельной площади также нашел своих пользователей среди землеустроителей. Теперь они знают, как рассчитать площадь участка легко и быстро.
Однако, помимо этих общих применений, многие работающие в области образования, медицины, науки и исследований нуждаются в расчете площади неправильных форм, таких как клеточные мембраны или другие объекты, обнаруженные в биологии, и с удовольствием пользуются этим приложением.
Для применения математики в повседневной жизни недостаточно уметь считать один плюс один. Существенным аспектом окружающей среды являются геометрические структуры, то есть представление повседневных предметов в прямоугольной, квадратной, круглой или треугольной форме. И надо уметь рассчитать нужную площадь.
Кроме того, геометрические фигуры используются и при построении диаграмм, схем, презентаций
Вот почему так важно уметь делать различные расчеты, в том числе и вычисление площади
Как посчитать квадратные метры стены с окном
В таком случае надо отдельно высчитать размер стены, отдельно – размер окна. Потом из большей площади вычесть меньшую. Получится число метров квадратных, которое необходимо будет покрыть краской или штукатуркой.
Алгоритм действий:
- По уже пройденному сценарию высчитать размер стены. Пускай будет уже известное число – 15,4 м2.
- Далее измерить высоту и длину окна. Перемножить числа. К примеру: длина 1,5 м, высота 1,2 м. Если умножить, то получится 1,8. Значит, площадь окна 1,8 кв. м.
- Берем площадь стены и вычитаем из нее размер окна: 15,4 – 1,8 = 13,6. Площадь, которую необходимо будет привести в порядок, – 13,6 кв. м.
Зачем проводить расчет площади комнаты?
Любой ремонт не может начинаться без точных знаний о размерах комнаты. Чтобы посчитать количество обоев или панелей, нужно узнать размеры и площадь стен, для приобретения достаточного количества потолочной плитки снимаются мерки с потолка. Конечно, для закупки в требуемых объемах напольного покрытия также придется постараться и узнать значение площади всего пространства пола.
Для чего могут пригодится расчеты площади
Со снятием мерок с помещения и определением площади основания сталкивается каждый человек, который решил самостоятельно начать ремонт. Если владелец жилого помещения обратился за помощь к специалистам, то ему ни во что вникать не придется – мастера все сделают сами. Однако все же многие решаются на проведение ремонтных работ своими руками. Это позволяет значительно сэкономить деньги, затраченные на ремонт.
Для ремонта необходимо точно знать размеры комнаты
Основные причины необходимости определения площади пола следующие:
- ремонт или первичная укладка напольного покрытия;
- заливка свежей стяжки;
- обустройство системы лаг;
- окрашивание пола;
- нанесение на пол других строительных материалов;
- определение размера жилой площади при оформлении документов либо покупке/продаже квартиры или дома;
- определение соответствия помещения плану комнат;
- подбор мебели по габаритам;
- составление плана комнаты для проведения дальнейших работ;
- оценка стоимости работы специалистов и других затрат.
Не всегда измерение площади пола оказывается простой процедурой
В основном, знание площади пола требуется для того, чтобы высчитать нужное для отделки количество строительных материалов, которые будут использованы при работе. Например, объем цементной смеси для заливки стяжки, количество наливного пола или пачек ламината и т. д.
Виды напольного покрытия
Методика выполнения работы
Перед тем, как рассчитать квадратуру дома, нужно подготовить следующее:
- Калькулятор для проведения вычислений.
- Рулетка для проведения измерений. При этом надо учитывать, что некоторые производят измерения в дюймах – они не подойдут. Нужна рулетка, которая указывает длину с помощью сантиметров.
- Потребуется план квартиры. Измерение площади стен, пола и потолка будет выполняться на его основе. Если такую схему найти нельзя, то её нужно нарисовать от руки, стремясь реалистично отобразить размеры и геометрическую форму частей.
- Также потребуется бумага и карандаш для ведения записей в процессе работы.
При замерах полов, стен и потолков в первую очередь потребуются знания из школьной геометрии. Простейшим способом, как рассчитать площадь дома в квадратных метрах, является вычисление прямоугольных поверхностей. Площадь прямоугольника вычисляется как произведение его сторон.
Вычисление площади простейших геометрических фигур основано на базовых формулах из геометрииИсточник stroychik.ru
При этом важно учитывать следующее.
Хотя на вид комната состоит из прямоугольных деталей, на самом деле это может оказаться немного по-другому. Например, ширина стен, измеренная с одной и другой стороны, может отличаться на несколько сантиметров. Эта проблема особенно существенна при измерении расстояний в домах старой постройки. В таких случаях обычно измеряют длину в нескольких местах, а при вычислении площади используют среднее значение.
Вычисления позволяют получить нужные цифры с высокой точностью
Однако будет разумной предосторожностью при вычислениях добавить к площади небольшую величину. Это позволит исключить ситуацию, в которой стройматериалов чуть-чуть не хватило.
Таким способом можно вычислить площадь прямоугольных пустых стен, пола и потолка.
Сложная форма стен и потолка может быть разделена на простые фигуры для упрощения вычисленийИсточник www.buvbaze.lv
Расчёт площади стен с окнами и дверьми
Если на стене есть окно или дверь, то вычисление производится следующим образом:
- Определяется площадь стены без учёта двери или окна.
- Вычисляется площадь каждого окна или двери путём умножения их длины на ширину.
- Из площади стены вычитают площадь окон и дверей.
Этот способ применим в тех случаях, когда рассматриваются прямоугольные стены.
Площадь стены, имеющей неправильную форму
В этом случае нужно разделить вычисления на этапы. Стена с нишами может иметь сложную форму. Однако её всегда можно условно разбить на несколько участков, каждый из которых соответствует одной из простых форм. Затем надо рассчитать площади каждой из частей и сложить их.
Как посчитать площадь стен, рассказано в видео
Расчёт через периметр
Если комната имеет неправильную форму, то площадь стен можно вычислить, измерив длину периметра. В этом случае проводят измерение горизонтальных отрезков по каждой из сторон помещения и складывают их вместе, затем определяют высоту. Произведение этих величин равно площади стен в этом помещении.
Несколько советов
- Нужно при проведении расчётов все цифры наносить на план. Таким образом сохранится не только результат, но и промежуточные вычисления, которые могут пригодится при проведении ремонтных работ в будущем.
- При вычислении площади нужно учитывать, что не всегда необходима полная величина. Например, обои могут клеить не только на всю стену, а на их часть. Класть плитку могут до потолка либо только до определённой высоты. Поэтому нужно точно определить, как высчитать квадратуру дома с учётом конкретного плана ремонта.
Как сделать замеры – можно посмотреть в видеоролике:
Для того, чтобы точно знать, сколько необходимо стройматериалов для проведения работ, нужно учитывать площади стен, пола и потолка, а также нормы расхода стройматериалов. Среднюю величину расхода можно узнать, спросив у продавцов, а квадратуру дома необходимо измерить самостоятельно. Для этого нужно воспользоваться знаниями из элементарной геометрии. При вычислении площади сложных фигурных поверхностей их разбивают на простые части, делают необходимые вычисления, затем суммируют их.
Инструменты для определения квадратных метров
Для расчета площади стен потребуются:
- Строительный уровень, помогает удостовериться в ровном расположении меток, линий.
- Чтобы правильно вычислить площадь, потребуется рулетка.
- Используя угольник, можно удостовериться в правильности углов.
Проверка угла
- На бумаге карандашом чертят чертеж.
- Для точности подсчета, лучше пользоваться калькулятором.
Рисуем схематическое изображение перегородок в комнатах, наносим на чертеж размеры, измеренные рулеткой. Не забудьте обозначить проемы окон, дверей на внешних стенах.
Недостаток расчетов вручную стен в ванной – легко допустить ошибку, пропустив замер одной из сторон. Либо наоборот, посчитать одну сторону два раза.
Вариант расчета – программа 3Д Редактор. Нужно загрузить из интернета на компьютер. Достаточно вбить в поиск 3Д редактор, система предложит варианты.
В программе необходимо нарисовать схематический рисунок комнаты в квартире, указать размеры стен, выемок, выпуклостей. Выделив необходимые участки, получаем точные расчеты размеров.
Схематическое изображение на 3Д редакторе
Как найти площадь треугольника
Как вы можете помнить из школьной программы по геометрии, треугольник – это фигура, образованная из трех отрезков, соединяющихся тремя точками, не лежащими на одной прямой. Треугольник образует три угла, отсюда и название фигуры. Определение может быть и иным.
Треугольник можно так же назвать многоугольником с тремя углами, ответ будет так же верным. Треугольники делятся по числу равных сторон и по величине углов в фигурах.
Так выделяют такие треугольники, как равнобедренный, равносторонний и разносторонний, а так же прямоугольный, остроугольный и тупоугольный, соответственно.
Формул вычисления площади треугольника очень много. Выбирать, как найти площадь треугольника, т.е. какой формулой воспользоваться, только вам. Но стоит отметить лишь некоторые обозначения, которые используются во многих формулах вычисления площади треугольника. Итак, запоминайте:
S – это площадь треугольника,
a, b, c – это стороны треугольника,
h – это высота треугольника,
R – это радиус описанной окружности,
p – это полупериметр.
Вот основные обозначения, которые могут вам пригодиться, если вы совершенно забыли курс геометрии. Ниже будут приведены наиболее понятные и не сложные варианты вычисления неизвестной и загадочной площади треугольника. Это не сложно и пригодится как вам в домашних нуждах, так и для помощи своим детям в домашнем задании. Давайте вспомним, как вычислить площадь треугольника проще простого:
В нашем случае площадь треугольника равна: S = ½ * 2,2 см. * 2,5 см. = 2,75 кв.см. Помните, что площадь измеряется в квадратных сантиметрах (кв.см.).
Прямоугольный треугольник и его площадь
Прямоугольный треугольник – это треугольник, у которого один угол равен 90 градусам (потому называется прямым). Прямой угол образуют две перпендикулярные линии (в случае с треугольником – два перпендикулярных отрезка). В прямоугольном треугольнике прямой угол может быть только один, т.к.
сумма всех углов одного любого треугольника равна 180 градусам. Получается, что 2 других угла должны делить между собой оставшиеся 90 градусов, например 70 и 20, 45 и 45 и т.д. Итак, основное вы вспомнили, осталось узнать, как найти площадь прямоугольного треугольника.
Представим, что перед нами вот такой прямоугольный треугольник, и нам необходимо найти его площадь S.
В нашем случае, площадь прямоугольного треугольника равна: S = 2,5 см. * 3 см. / 2 = 3,75 кв.см.
В принципе, больше нет необходимости выверения площади треугольника иными способами, т.к. в быту пригодится и поможет только этот. Но существуют и варианты измерения площади треугольника через острые углы.
2. Для других способов вычисления необходимо иметь таблицу косинусов, синусов и тангенсов. Посудите сами, вот какие варианты вычисления площадей прямоугольного треугольника еще можно использовать:
S = (2,5*2,5)/(2*0,9)=(3*3)/(2*1,2). У нас вышли такие результаты 3,6=3,7, но с учетом сдвига клеток, этот нюанс нам можно простить.
Равнобедренный треугольник и его площадь
Если перед вами стоит задача вычислить формулу равнобедренного треугольника, то проще всего воспользоваться главной и как считается классической формулой площади треугольника.
Но для начала, перед тем, как найти площадь равнобедренного треугольника, узнаем, что это за фигура такая. Равнобедренным треугольником называется треугольник, у которого две стороны имеют одинаковую длину. Эти две стороны называются боковыми, третья сторона называется основанием. Не путайте равнобедренный треугольник с равносторонним, т.е.
правильным треугольником, у которого все три стороны равны. В таком треугольнике нет особых тенденций к углам, точнее к их величине. Однако углы у основания в равнобедренном треугольнике равны, но отличаются от угла между равными сторонами.
Как вы можете заметить, в этих формулах активно используются углы, их величины, косинусы, синусы и тангенсы.
По этой причине, без специальной книжки вам не обойтись, хотя всю информацию вы сможете найти в Интернете.
Отметим только, что в формулах угол альфа – тот, что находится между боковой стороной и основанием, а угол гамма (y) – тот, что находится между равными боковыми сторонами треугольника.