Содержание:
- Особенности устройства люминесцентной лампы
- Принцип работы
- Коэффициент мощности и энергоэффективность
- Закрепление осветителя
- Коммутация люстры с электричеством
- Одна лампа – один выключатель
- Как подключить ЛЕД-светильник к 220В
- Основные правила сборки самодельных led-светильников
- Достоинства и минусы
- Конструкция светодиодных люстр и визуальный осмотр
- Схемы драйверов и их принцип работы
- Подключение к напряжению 220 В
Особенности устройства люминесцентной лампы
Чтобы отчётливее понимать стремление общества к замене люминесцентных ламп светодиодными приборами, логично ближе ознакомиться с газовой конструкцией.
Действительно, прибор света с люминесцентным покрытием – это стеклянная герметичная трубка, заполненная, как правило, парами ртути.
Люминесцентные светильники с лампами, наполненными газовой средой, «питаются» электричеством через дроссельный элемент. Более совершенные конструкции оснащаются электронной схемой без наличия дросселей и считаются несколько улучшенными в плане эксплуатации
Выпускаются две модификации таких приборов:
- Для уличной инсталляции (с колбами высокого давления).
- Для бытовой установки (с колбами низкого давления).
Фактически внутри баллона люминесцентной лампы присутствует смесь газов, состоящая из паров ртути и аргона. Изнутри стенки стеклянной колбы покрываются специальным составом – люминофором. Когда в газовой среде образуется электрический разряд, формируется свечение газа, а за счёт люминофора это свечение трансформируется в свет видимого диапазона.
Преимущества люминесцентных светильников
Разработка и производство светильников подобного типа, прежде всего, явились результатом постоянного запроса на экономию энергоресурсов. Следует отдать должное – люминесцентные лампы позволяют существенно экономить.
Энергосберегающий прибор света и традиционный источник с нитью прямого накала. Если сравнивать по энергетическим параметрам, разница отмечается существенная в пользу первого прибора, где потребление тока снижено в разы
При этом экономить можно за счёт более высокой светоотдачи приборов, размещая меньшее число приборов на единицу площади по сравнению с лампами прямого накала.
Целесообразность применения газоразрядных ламп отмечается не столько для бытовой сферы, сколько для промышленно-хозяйственных структур, то есть там, где необходимо освещать значительные площади с минимальными издержками в плане энергопотребления.
Среди преимуществ люминесцентных светильников выделяется приличная эксплуатационная наработка. В среднем эксплуатационная наработка для газовых конструкций составляет 10000 часов.
Сравнительная картография, где отмечаются электрические преимущества приборов света разного периода использования. Как видно из сравнительных параметров, традиционная лампа прямого накала является самым «расточительным» прибором света
Если люминесцентные лампы приравнивать к аналогам прямого накала, где максимум наработки – 1000 часов, преимущественная разница становится более чем очевидной.
Недостатки приборов света с напылением люминофора
Однако имеющиеся преимущества люминесцентных ламп, к сожалению, не скрывают явно выраженных недостатков этих же приборов. И главный негатив здесь – повышенная химическая опасность.
Структура люминесцентного источника света: 1 – стеклянная герметичная трубка; 2 – слой люминофора; 3 – нить накала; 4 – световой поток, видимый для людей; 5 – атом ртути
Баллон каждого светильника содержит как минимум 2 мг ртути, а этот химический элемент относится к разряду крайне опасных для живого организма. Конечно, пока колба находится в герметичном состоянии, химическая опасность сводится к нулю.
Тем не менее, случаи боя стеклянных баллонов люминесцентных ламп – это практика вполне обыденная
Поэтому важно сразу же задуматься о правильной утилизации люминесцентных ламп
Также из недостатков следует отметить «холодный» свет и эффект «стробирования». Оба эффекта оказывают неблагоприятное действие на зрение. Именно поэтому люминесцентные светильники не нашли широкого применения в бытовой сфере. Одним словом, нашлись все основания, чтобы поставить ребром вопрос о замене люминесцентных светильников. Подходящая альтернатива нашлась быстро.
Принцип работы
Здесь владельцы должны учитывать несколько особенностей:
- Переменное напряжение в 220 В подают к драйверам у светодиодных ламп. Частоты такой энергии составляет 50 Гц.
- Далее сам поток переходит по конденсатору, ограничивающему ток.
- Следующий компонент, где оказывается энергия – выпрямительный мост, собранный на основе четырёх диодов.
На выходе моста на следующем этапе появляется выпрямленная разновидность напряжения. Именно этот вариант энергии нужен, чтобы диоды правильно работали. Но драйвер нужно дополнить электролитическим конденсатором, чтобы устройство начало действовать как надо. Тогда пульсации, возникающие при выпрямлении переменного напряжения, сглаживаются.
В устройстве также присутствуют сопротивления разного вида. Для разрядки конденсатора, дополнительной защиты служит специальный резистор. Другой, с обозначением 1 на схемах – ограничивает ток, который поступает на лампочку при включении.
Устройство светодиодной лампочки 220В
В любой светодиодной лампе выделяют следующие компоненты:
- Световой поток становится равномерным благодаря рассеивателю.
- Резисторы или чипы, защищающие от резких изменениях в показателях.
- Печатная плата, для впаивания светодиодов.
- Радиатор, отводящий тепло.
- Драйвер. Он основа для сбора схемы, преобразующей переменный ток напряжения в постоянный. Главное – получить на выходе необходимую величину.
- Диэлектрическая прокладка, между корпусом и цоколем.
- Цоколь, в который вкручивают люстру и бра, светильник.
Отличие светодиодной от люминесцентной: краткое описание
С конструкцией связаны главные отличия. Основа люминесцентных ламп – колба из стекла. Ртутные пары и инертные газы наполняют часть этого устройства внутри. Запайка обеспечивает герметичность. Сфера применения шире благодаря комплектам с цоколями различных габаритов.
На электронных матрицах построены светодиодные лампы. Это электронное соединение нескольких диодов друг с другом. В изделиях присутствуют и другие вспомогательные элементы, для обеспечения стабильной работы механизма. Низкое энергопотребление – главное преимущество светодиодных ламп по сравнению с другими.
Коэффициент мощности и энергоэффективность
В бездрайверном светильнике, собранном по схеме рис. 1 или подобной, значительная часть потребляемой мощности (около 25%) рассеивается на токоограничительном резисторе. Кроме этого, значительную часть периода колебаний в сети, когда мгновенное значение напряжения на каждом светодиоде меньше 1,5 В, цепочка светодиодов полностью закрыта и ток через светильник практически не течет. Помимо нерационального использования электроэнергии, такая особенность приводит к снижению коэффициента мощности PF до значений ниже минимально допустимого предела 0,6. При потребляемой мощности до 5 Вт с этим еще можно как-то мириться, но при большей потребляемой светильником или светодиодной лампой-ретрофитом мощности нарушаются действующие нормы и может произойти преждевременный износ оборудования электросетей.
Простейшая схема включения чипа Acrich IC 3.0
Решение проблемы заключается в том, чтобы «наращивать» цепочку последовательно соединенных светодиодов по мере роста мгновенного значения напряжения питания. Находимся на пике синусоиды — включены все светодиоды. Находимся вблизи нуля — светится минимальное количество светодиодов, которые можно скоммутировать. При этом светодиоды открыты, и ток в нагрузке продолжает течь. Именно такое решение предлагает компания Seoul Semiconductor в своих бездрайверных светодиодных модулях Acrich3, производящихся с 2014 года. «Сердцем» такого модуля является чип Acrich IC 3.0, коммутирующий четыре группы последовательно включенных светодиодов.
Пример светодиодного модуля типа Acrich3
В итоге появляется возможность увеличить PF до 0,97, что находится на уровне лучших светильников с драйверами. Можно сказать, что такой светильник не создает практически никаких проблем для электросети, к которой он подключен. КПД чипа Acrich IC 3.0 достигает 90%.
Для уличного освещения Seoul Semiconductor предлагает модули Acrich2.5 на основе предыдущей версии платформы Acrich2, работающей аналогичным образом (коммутация четырех цепочек светодиодов).
Помимо Seoul Semiconductor технологию АС-модулей с повышенным PF развивает и такая известная компания как Edison Opto. Fla рынке представлена серия модулей EdiLex от этой компании. К сожалению, Edison Opto не публикует в открытых источниках данные о конструкции своих бездрайверных светодиодных модулей, тем не менее, по косвенным данным можно предположить, что и здесь используется принцип коммутации групп светодиодов в зависимости от конкретного участка синусоиды. PF модулей EdiLex достигает 0,95. Главная «фишка» данных модулей, выгодно отличающая их от конкурентов — наличие встроенной функции трехступенчатого диммирования.
Закрепление осветителя
Привычные светильники оснащены крюками. Современные варианты укомплектовываются монтажной планкой. Множество проводов и пластиковых коробок может вызвать растерянность. Чтобы понять, с какой стороны подходить к люстре, нужно разобраться в её конструктивных особенностях.
Встрёпываемые точечные светильники просты в установке. Диаметр корпуса осветителя определяет размер отверстия (обычно 68 мм). Наружная юбка немного шире, чтобы зафиксировать прибор снаружи. Внутри эту задачу выполняют специальные пружины. Средний шаг 1 м.
Расположение люстры на потолке включено в дизайнерский проект или выбирается самостоятельно. Корпусом нового электроприбора можно закрыть старую дыру, в том числе.
Этапы монтажа:
- Перфорированная планка закрепляется под потолком.
- Перед тем как подключить светодиодную люстру, отключается питание на щитке. Электромонтаж проводки можно осуществлять только в обесточенной системе.
- Разобраться в жилах легко по цветовой маркировке изоляции: жёлто-зелёный — заземление, голубой — нейтраль, остальные цвета — фаза. Если по какой-то причине это сделать невозможно, на помощь придёт тестер. От старого двойного выключателя может приходить лишний фазный провод, который отстраняется и изолируется. Коммуникатор заменяется на одноклавишный или сенсорный. Контроллер с приёмником расположен в верхней чаше люстры. Для светодиодных источников питание должно заходить через понижающий электронный или индукционный трансформатор. Подводящие провода заходят в клеммник согласно обозначениям: L — фаза, N — ноль, PE — защитное заземление.
- На блоке люстры с пультом управления подключение разводки по группам осветителей представлено на схеме. Если таковой нет, нужно найти её в инструкции производителя. При желании распределение можно изменить, переделать под себя.
- Собираются все декоративные элементы, устанавливаются лампы, фиксируется абажур.
Коммутация люстры с электричеством
Опустим вопросы, как подключить светильник напичканный электроникой. Для этого лучше пригласить квалифицированного электрика. А вот для подсоединения обычной люстры специальных умений не требуется. Главное не перепутать провода.
Маркировка проводки
Напомним общеизвестную теорию. По кабелю в нашем доме бежит переменный ток, напряжение которого 220 В, а частота 50 Гц. А доставка этого тока идёт с помощью двух проводов – «фазы» и «нуля». Может присутствовать ещё и 3-й провод, подключаемый к шине заземления.
Различить их не сложно, т.к. маркировка общепринятая:
- «ноль» – с синей или голубой изоляцией;
- «земля» – с жёлто-зелёной изоляцией;
- «фаза» – имеет изоляцию любого другого цвета.
Нередки случаи, когда один кабель содержит много проводов – ноль, землю и несколько фаз. Это даёт возможность подключать различные комбинации проводов и позволяет работать осветительным приборам в нескольких режимах.
Однако бывают исключения. В домах старой советской постройки применялась проводка с одноцветной изоляцией. Это уже существенно усложнит задачу для непосвящённого пользователя.
Пример электропровода с одним «нулём», одной «землёй» и тремя «фазами»Источник open4business.com.ua
Процесс подключения
Следует начать с самого простого варианта – как подсоединить люстру при выходе их полотка двух проводов. Очевидно, что это «ноль» и «фаза». Первый идёт к распределительной коробке, а второй к выключателю, где должен прерываться. Желательно произвести проверку правильности этих общепринятых правил, потому что человеческий фактор никто не отменял и вероятность, что электрики в своё время ошиблись, существует.
Проводка помещения
Чтобы проверить проводку понадобиться наличие специализированного сигнализационного прибора для обнаружения фазы, который чаще всего выглядит как отвёртка в прозрачном корпусе.
Пример одной из самых распространённых и простых отвёрток-тестеровИсточник mihalich.group
Начать стоит с полного обесточивания помещения с помощью рубильника на распределительном щитке
Это важно для качественной зачистки проводов. Нужно снять с концов изоляцию и возможные окислы размером до 1 см
Затем развести зачищенные кончики в разные стороны, чтобы не допустить замыкания, и снова пустить ток.
Сначала выключатель светильника должен находиться в выключенном положении. Нужно проверить все провода на наличие фазы. Если фаза обнаружится, то с проводкой проблема. Исправить это самостоятельно вряд ли удастся, просто придётся учесть этот факт и быть более осторожным в последующих действиях.
Аналогично нужно найти фазу с включённым выключателем. Этот провод нужно запомнить или пометить.
Отметим, что для установки двухклавишного или трёхклавишного выключателя нужно иметь минимум такое же количество проводов с фазой в кабеле. Эти провода лучше также пометить, чтобы не сделать ошибки
Важно, что проверка наличия фазы нужна, даже если провода промаркированы правильными расцветками.
Подключение люстры к одноклавишному выключателюИсточник dkbzaweb.com
Проводка люстры
Простейшим случаем станет подключение светильника одно-, двух- или трёхрожкового, проводку которого не требуется подразделять на подгруппы. Все однотипные провода от патронов соединяются к двум контактам – «нулю» и «фазе». Кабель заземления обычно выводят на корпус устройства из металла.
В случае двухконтактного выключателя и необходимости разделить освещение, тогда все «нули» объединяются вместе, а «фазы», идущие от патронов, объединяются в подгруппы, количество которых зависит от числа клавиш выключателя. Например: в пятипатронной люстре фазы от двух патронов кинуть на одну клавишу выключателя, а фазы от оставшихся трёх соединить на вторую клавишу.
Следует напомнить, что все соединения проводов следует качественно спаивать и изолировать или объединять клеммной колодкой.
Иногда возникает сложность, как подключить люстру с 3 проводами, когда внутренняя разводка скрыта устройством или корпусом прибора. В таком случае следует прозвонить провода мультитестером, и провести проверку соответствия их патронам просто последовательно вкручивая лампочку в патроны.
Схема подключения люстры к двойному выключателюИсточник lifehacker.ru
Определить внутреннюю проводку можно многими методами, но прозвон рожков и опыт с лампочкой будет самым простейшим в определении, какой провод относится к патрону. После это нужно произвести раздел проводов на подгруппы и соединение с кнопкой выключения.
Результатом описанной подготовки подключения люстры должно стать чёткое представление человеком схемы коммутации, наличие зачищенных и промаркированных проводов у потолка и подготовленных групп контактов светильника.
Одна лампа – один выключатель
Самая простая схема состоит из одного осветительного элемента и одноклавишного рубильника.
Теоретически подключение не отличается от описанного выше – нулевая жила идет напрямую от распределительного щита к потребителю, а вот в фазный производится врезка прерывателя. Но практически все выглядит несколько сложнее.
Для подключения такого типа в первую очередь следует определиться с местом монтажа распределительной коробки.
Ее следует установить, как можно ближе к месту установки выключателя, при этом должна исключаться легкость доступа к ней.
От этого напрямую зависит количество проводов, требуемого для создания ветки. Оптимальное ее расположение – под потолком над рубильником.
А далее все просто:
- Определяем месторасположение осветительного элемента – лампы (к примеру – в центре потолка);
- Выбираем место установки прерывателя (условно – ниже распределительной коробки);
- В распределительную коробку заводим проводку, идущую от распределительного щита;
- По потолку прокладываем проводку (по возможному кратчайшему пути) от патрона лампы и тоже ее заводим в коробку;
- Остается провести укладку провода от выключателя к распределительной коробке.
Для простоты провод, идущий от щита к коробке, обозначим как «ввод», а от коробки к потребителю – «вывод».
Для схемы с одноклавишным выключателем и одной лампой используются двухжильные провода.
После укладки всей проводки (открытым или закрытым способом) остается только все правильно соединить и для этого важно определить, какая жила — фазная, а какая – нулевая. Узнать это можно при помощи индикаторной отвертки, сделав соответствующую проверку на выводах из распределительного щита до отключения питания электросети. Узнать это можно при помощи индикаторной отвертки, сделав соответствующую проверку на выводах из распределительного щита до отключения питания электросети
Узнать это можно при помощи индикаторной отвертки, сделав соответствующую проверку на выводах из распределительного щита до отключения питания электросети.
Чтобы было понятнее, рассмотрим, как все правильно соединить, используя разный окрас оплетки жил проводки.
К примеру, для создания ветки питания осветительного элемента использовался провод с жилами, окрашенными в коричневый и синий цвета.
При подключении вводного провода к распределительному щиту коричневую жилу соединили с фазным выводом, а синюю – с нулевым.
Зная это, остается только все правильно соединить в распределительной коробке.
Поскольку «ноль» идет напрямую на потребителя, то синюю (нулевую) жилу ввода соединяем с соответствующей по цвету жилой вывода.
Остается включить в схему рубильник. От него к распределительной коробке тоже кинут двухжильный провод, но в этом случае он — две части одной линии (фазной).
Берем коричневую (фазную) жилу ввода и соединяем ее с любой из жил, к примеру, тоже с коричневой, ведущей на выключатель.
Остается только синюю жилу, идущую из выключателя, соединить с коричневой жилой вывода.
Далее все места соединения необходимо качественно заизолировать, и только после этого – проверять работоспособность созданной ветки путем подачи на нее напряжения.
Это мы рассмотрели детально способ подключения одной лампы к одноклавишному прерывателю.
Все последующие схемы построены по описанному принципу, поэтому укажем только их ключевые моменты.
Как подключить ЛЕД-светильник к 220В
Основное достоинство таких светильников в сравнении с работающими от 12 Вольт в том, что их напрямую можно питать от выключателя. В результате не требуются дополнительные финансовые затраты на приобретение блока питания, а также монтаж не вызывает сложностей. Существует несколько способов установки светодиодных светильников:
- последовательное подключение;
- параллельное;
- лучевое.
Каждый используется в разных ситуациях и имеет свои достоинства и недостатки.
Последовательное
Последовательное подключение используется в том случае, если нужно сэкономить метраж кабеля, и при этом к помещению нет особых требований. Для реализации потребуется несколько двойных или тройных проводов. В одну цепь допускается установка не более шести светодиодных лампочек, в противном случае яркость будет низкой. Если один светильник выйдет из строя, придется проверять работоспособность каждого, чтобы устранить поломку.
Само подключение не должно вызывать сложностей. К первому светильнику от выключателя проводится фаза, далее от первого переключателя кабель протягивается к следующему устройству. К последнему светильнику прокладывается ноль, который идет от распределительной коробки.
Если в схеме допустить ошибку и питание с нулем перепутать местами, лампы будут под постоянным напряжением, что небезопасно.
Параллельное
Параллельное подключение более практичное и используется чаще. В процессе реализации каждый светильник будет выдавать яркость, которая заявлена производителем. Единственный недостаток, который можно выделить – повышенный расход проводника в сравнении с последовательным подключением.
Рекомендуется отдавать предпочтение кабелю ВВГ нг 2*1,5 или 3*1,5. Обозначение свидетельствует о наличии ПВХ-оболочки – качественного изоляционного материала. В маркировке отметка «нг» указывает на негорючесть модели. Если к помещению выдвинуты особые требования, иногда используют провода с дополнительной маркировкой «ls», которая означает, что при воспламенении выделяется небольшое количество дыма.
Для подключения светильника через выключатель от распределительной коробки протягивают кабель. Его поочередно соединяют с каждым светильником. После первой лампы кабель обрезается и подается к следующему, пока все устройства не будут соединены в одну общую систему.
Преимущество параллельного способа подключения в том, что даже если одна лампа выйдет из строя, цепь будет полностью работоспособной.
Лучевое
По своей природе лучевая схема относится к параллельному подключению, часто применяется для люстр. Принцип реализации заключается в прокладке кабеля к каждому осветительному прибору индивидуально. Этот способ самый трудоемкий и требует больших финансовых затрат из-за большого количества используемого провода. Для экономии кабель от распределительного щитка проводят в центр комнаты и уже оттуда к каждому светильнику. Далее к фазе и нулю подводят одножильные провода, которые прокладываются к светильникам.
Еще на этапе проектирования важно решить, как будут соединены жилы с отдельным кабелем. Если ламп немного, достаточно скрутки
С целью безопасности ее надежно обжимают пассатижами и паяльником сваривают воедино. Существует альтернатива этому способу – приобрести клеммы с определенным количеством выходов. На каждую жилу надевается разъем и лишь после провода тянутся к осветительным приборам.
Схема подключения светодиодных ламп во всех случаях принципиальных отличий не имеет.
Основные правила сборки самодельных led-светильников
Чтобы сделать рабочий светильник на основе светодиодов, необходимо убедиться как в грамотности его схемы, так и в правильности подбора его элементов:
- Сборку диодов осуществлять строго по приведенной схеме. При неправильном подключении возможен взрыв!
- Качество спайки компонентов должны быть на высоком уровне. В противном случае возможно разъединение контактов и поломка светильника.
- Для точного расчета всех параметров, в том числе падения напряжения, необходимо проводить предварительные замеры точными приборами, мультиметром.
- Чтобы устранить эффект голубоватой подсветки (раздражающих глаза) белых диодов, необходимо на каждые 10 led-элементов монтировать 3-4 красных.
Достоинства и минусы
Вы знаете, как подключить потолочные светильники, осталось выбрать какие.
Чтобы выбрать из различных вариантов плафонов и люстр для потолка, нужно знать с чем можно столкнуться в процессе эксплуатации. Посмотрим, какие плюсы есть у потолочных светильников:
- большой выбор;
- разный способ монтажа;
- возможность установки в любом помещении;
- излучают рассеянный свет, не режущий глаза.
- замена вышедших их строя лампочек затруднительна. Но, это зависит от типа светильника;
- кабель, проложенный к выключателю, необходимо удлинять.
Всё говорит в пользу монтажа осветительных приборов для подвесных покрытий.
Конструкция светодиодных люстр и визуальный осмотр
С пультом управления люстры появились не так давно. Мало кто знаком с их устройством. Проводя ремонт светодиодных потолочных люстр необходимо знать конструкцию, просто в общих чертах. Разберёмся подробнее, из чего она может состоять.
Простая светодиодная люстра состоит из корпуса, блока регулятора или драйвера. Он применяется в качестве выпрямителя напряжения. В нем установлены клеммы, или клеммные зажимы, к которым подсоединяют питание сети. Затем от блока проходят провода к лампам. Их может быть от одного провода, под обычную лампу, до 12 под дизайнерский вариант устройства.
Более сложный вариант изделия, состоит из антенны, блока управления самим освещением, регулятора напряжения или неск
олькими блоками, проводящие автоматическую настройку. В растровых светильниках может быть несколько драйверов и разные типы светодиодных элементов, ламп. От конкретного вида осветительного прибора зависит проверка и ремонт компонентов.
Почему необходимо знать или выяснить конструкцию, перед тем как
начать ремонт светодиодной люстры. Причина проста, требуется определить, где находятся блоки управления, внутри люстры или в
самом элементе освещения, лампе. Вот здесь нам понадобится та самая схема люстры на светодиодах.
Ремонт светодиодной люстры работающей без пульта проводить проще. В ней нет ничего сложного, собраны по одному типу: один или несколько диодов (возможен компактный мост), электролиты (конденсаторы), пару сопротивлений (резисторов), и катушка с обмоткой. Это простейшая схема без защиты, вариантов их существует множество, но мы сейчас разберём именно простейшую схему.
- Сняв светильник, осмотрите плату на присутствие видимых дефектов, обрыва проводов, отсутствие таковых хороший признак.
- Снимите плафон или украшение вокруг лампы, выкрутите элементы освещения. Осмотрите цоколь, подгоревшие места говорят о плохом контакте. Если они есть попробуйте зачистить их ножом.
- Перепакуйте клеммники, или скрутки, подтяните винты на всех деталях. Не обнаружив видимых дефектов, переходим к осмотру ламп. Вариант блочного светильника, где реле и лампы находятся рядом на большой плате, рассматривают как ремонт лампы описанной ниже.
- Ремонт светодиодной люстры своими руками начинают с определения места поломки или обрыва.
Схемы драйверов и их принцип работы
Чтобы провести успешный ремонт, необходимо четко представлять, как лампа работает. Одним из основных узлов любой светодиодной лампы является драйвер. Схем драйверов для светодиодных ламп на 220 В существует множество, но условно их можно разделить на 3 типа:
- Со стабилизацией тока.
- Со стабилизацией напряжения.
- Без стабилизации.
Только устройства первого типа, по своей сути, являются драйверами. Они ограничивают ток через светодиоды. Второй тип лучше назвать блоком питания для светодиодной ленты. Третий вообще как-то назвать сложно, но его ремонт, как я указывал выше, самый простой. Рассмотрим схемы ламп на драйверах каждого типа.
Драйвер со стабилизацией тока
Драйвер лампы, схему которой ты видишь ниже, собран на интегральном стабилизаторе тока SM2082D. Несмотря на кажущуюся простоту он является полноценным и качественным, да и ремонт его несложен.
Сетевое напряжение через предохранитель F подается на диодный мост VD1-VD4, а затем, уже выпрямленное, на сглаживающий конденсатор С1. Полученное таким образом постоянное напряжение поступает на светодиоды лампы HL1-HL14, включенные последовательно, и вывод 2 микросхемы DA1.
С первого же вывода этой микросхемы на светодиоды поступает напряжение, стабилизированное по току. Величина тока зависит от номинала резистора R2. Резистор R1 довольно большой величины, шунтирующий конденсатор, в процессе работы схемы не участвует. Он нужен для того, чтобы быстро разрядить конденсатор, когда ты выкрутишь лампочку. В противном случае, взявшись за цоколь, ты рискуешь получить серьезный удар током, поскольку С1 останется заряженным до напряжения 300 В.
Драйвер со стабилизацией напряжения
Эта схема, в принципе, тоже довольно качественная, но подключать ее к светодиодам нужно несколько иначе. Как я уже говорил выше, такой драйвер правильнее было бы назвать блоком питания, поскольку он стабилизирует не ток, а напряжение.
Здесь сетевое напряжение сначала поступает на балластный конденсатор С1, снижающий его до величины примерно 20 В, а затем уже на диодный мост VD1-VD4. Далее выпрямленное напряжение сглаживается конденсатором С2 и подается на интегральный стабилизатор напряжения. Снова сглаживается (С3) и через токоограничивающий резистор R2 питает цепочку светодиодов, включенных последовательно. Таким образом, даже при колебаниях сетевого напряжения ток через светодиоды останется постоянным.
Отличие этой схемы от предыдущей как раз в данном токоограничивающем резисторе. По сути, это схема светодиодной ленты с балластным блоком питания.
Драйвер без стабилизации
Драйвер, собранный по этой схеме, – чудо китайской схемотехники. Тем не менее, если в сети напряжение нормальной величины и не сильно скачет, он работает. Устройство собрано по простейшей схеме и не стабилизирует ни ток, ни напряжение. Оно просто понижает его (напряжение) до примерной нужной величины и выпрямляет.
На этой схеме ты видишь уже знакомый тебе гасящий (балластный) конденсатор, зашунтированный для безопасности резистором. Далее напряжение поступает на выпрямительный мост, сглаживается конденсатором обидно малой емкости – всего 10 мкФ – и через токоограничивающий резистор поступает на цепочку светодиодов.
Что можно сказать о таком «драйвере»? Поскольку он ничего не стабилизирует, напряжение на светодиодах и, соответственно, ток через них напрямую зависят от входного напряжения. Если оно завышено, то лампа быстро сгорит. Если «скачет», то будет мигать и лампочка.
Такое решение обычно используется в бюджетных лампах китайских производителей. Назвать его удачным, конечно, сложно, но оно встречается довольно часто и при нормальном напряжении в сети может работать достаточно долго. Кроме того, такие схемы легко поддаются ремонту.
Подключение к напряжению 220 В
Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:
R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.
Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.
Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.
Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.
Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.
Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.
Как выбрать нужный драйвер, зависит от трех параметров:
- выходной ток;
- максимальное и минимальное напряжение на выходе;
Рабочий ток является важнейшей характеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.